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Abstract:
Lipoprotein Lipase (LPL) is an essential lipid metabolism enzyme affecting both the brain and peripheral tissues. Its
impact  on  neuronal  lipid  homeostasis,  synaptic  function,  and  plasticity  is  increasingly  recognized.  This  review
explores the various functions of LPL in the brain and how it may affect neurological health, especially in Alzheimer's
disease. We explore how LPL regulates lipid uptake and utilization in the brain, its influence on synaptic function,
neurogenesis,  and  myelination,  and  its  role  in  the  pathophysiology  of  AD.  Genetic  and  environmental  factors
modulating  LPL  activity  are  also  discussed.  The  review  provides  insights  into  LPL's  role  in  neurodegenerative
diseases, acknowledges current limitations and challenges in research, and highlights the therapeutic potential of
targeting LPL for AD treatment.  Ultimately,  this  review underscores the importance of  LPL in maintaining brain
health and its promising potential as a therapeutic target for AD.
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1. INTRODUCTION
An  essential  enzyme  in  the  body's  fat-processing

machinery  is  Lipoprotein  Lipase  (LPL),  which  was  first
identified for its enzymatic activity in 1943 by Paul Hahn
[1].  It  plays  a  vital  role  in  breaking  down  Triglycerides
(TGs) in the bloodstream into Free Fatty Acids (FFAs) and
glycerol.  These lipoproteins  include Chylomicrons (CMs)
and  Very  Low-density  Lipoproteins  (VLDLs),  which
transport  dietary  and  liver-synthesized  triglycerides,
respectively [1]. Skeletal, cardiac, and adipose tissue, as
well as the heart, are among the tissues that produce LPL.
It  is  then  transferred  to  the  luminal  surface  of  the
endothelial cells that line the capillaries. Here, it binds to
the  proteoglycans  Heparan  Sulfate  (HS),  allowing  the
enzyme  to  reach  and  break  down  triglycerides  [2].  In
addition  to  supplying  tissues  with  fatty  acids  for  energy
synthesis,  storage,  or  other  metabolic  processes,  this

process  is  essential  for  removing  lipoproteins  high  in
triglycerides from the bloodstream, which preserves lipid
homeostasis  and  prevents  diseases,  like  Hyper-
triglyceridemia  (HTG),  a  risk  factor  for  cardiovascular
disorders  [3].

Over  the  decades,  research  has  expanded  to  reveal
that LPL’s function is not limited to lipid metabolism, and
it  is  also  regulated  by  several  physiological  factors,
including  hormonal  signals,  like  Insulin  (INS),  which
enhances  LPL  activity  in  adipose  tissue  to  promote  fat
storage  postprandially,  and  other  proteins,  such  as
Apolipoprotein  (Apo)  and  Angiopoietin-like  Proteins
(ANGPTLs) [4].  Genetic mutations or deficiencies in LPL
or  its  regulators  can  lead  to  metabolic  disorders,  like
Familial Chylomicronemia Syndrome (FCS), characterized
by severe hypertriglyceridemia and recurrent pancreatitis
[5].
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In  recent  years,  research  has  uncovered  the  crucial
role  of  LPL  in  neurological  health.  LPL  helps  the  brain
absorb  critical  fatty  acids  and  other  lipids  required  for
neuronal maintenance and function. The brain depends on
lipids for its growth, structure, and function [6]. LPL's role
in  lipid  transport  is  vital  for  neurogenesis,  synaptic
plasticity,  and  myelin  production,  the  insulating  sheath
around  neurons  [7].  Additionally,  LPL  plays  a  role  in
controlling  lipid-derived  signaling  molecules  that  affect
neuroinflammation  and  neuronal  survival,  such  as
eicosanoids  and  Docosahexaenoic  Acid  (DHA)  [8].
Dysregulation  of  LPL activity  has  been linked to  various
neurological  disorders.  For  example,  decreased  LPL
function in Alzheimer's Disease (AD) can upset the brain's
lipid  balance,  which  helps  tau  tangles  and  amyloid-beta
plaques build up, two of the disease's main characteristics
[9]. Similarly, changed LPL activity in Parkinson's Disease
(PD)  may  influence  the  lipid  content  of  neuronal
membranes,  affecting  dopamine  neurotransmission  and
ultimately  resulting  in  neurodegeneration  [10].  LPL also
plays a role in cerebrovascular health, with its dysfunction
contributing to conditions, such as Ischemic Stroke (IS) by
affecting  lipid  metabolism  and  inflammation  in  blood
vessels  [11].

In  conclusion,  lipoprotein  lipase  is  a  multifaceted
enzyme  with  critical  roles  in  lipid  metabolism  and
neurological  health.  By  regulating  the  breakdown  and
distribution  of  Triglycerides  (TGs),  LPL  maintains  lipid
homeostasis  and  provides  essential  Free  Fatty  Acids
(FFAs)  to  tissues.  Its  involvement  in  the  brain's  lipid
metabolism  underscores  its  importance  in  maintaining
neurological  health  and  protecting  against  neuro-
degenerative  diseases.  Continued  research  into  the
functions  and  regulation  of  LPL  holds  promise  for
advancing  our  understanding  of  metabolic  and  neuro-
logical  diseases  and  developing  innovative  therapeutic
strategies.

2. LIPOPROTEIN LIPASE AND BRAIN FUNCTION
Lipoprotein lipase holds significant functional roles in

the brain, impacting neuronal lipid homeostasis, synaptic
function, and plasticity. Within the brain, LPL is produced
and excreted by both neurons and glial cells, functioning
at the capillary endothelium to facilitate the absorption of
lipoprotein-derived  fatty  acids  crucial  for  energy
metabolism  and  membrane  synthesis  [12].  These  fatty
acids  are  essential  for  synthesizing  membrane
phospholipids,  signaling  molecules,  and  myelin  sheaths,
vital for maintaining neural structure and function [13].

LPL  also  influences  lipid  signaling  pathways,
enhancing  the  availability  of  lipids  that  affect  signal
transduction  and  neuronal  survival.  By  interacting  with
lipoprotein receptors, such as the Low-density Lipoprotein
Receptor  (LDLR),  LPL  promotes  the  internalization  of
lipoproteins, further contributing to lipid homeostasis and
receptor-mediated signaling in neurons [14]. In addition,
LPL maintains the balance of membrane composition and
fluidity, which is crucial for proper synaptic function [14].
Neurons  rely  on  a  stable  lipid  supply  for  membrane

phospholipids,  directly  influencing  membrane  properties
and  cellular  signaling.  Furthermore,  LPL  regulates  lipid
storage and mobilization within neurons, sustaining lipid
reservoirs in the form of lipid droplets that can be utilized
during periods of high metabolic demand [15].

In  the  myelination  process,  LPL  facilitates  the
provision  of  necessary  lipids  for  synthesizing  myelin
sheaths, which are essential for rapid signal transmission
along axons [16].

By  promoting  synaptic  vesicle  formation  and
maintaining a sufficient lipid supply for vesicle formation
and recycling, LPL plays a critical role in synaptic function
and  plasticity  and  is  necessary  for  effective  neuro-
transmitter release [17]. Synaptic vesicles' merging with
the presynaptic membrane, influenced by the membrane's
lipid  content,  is  necessary  to  release  neurotransmitters.
Synaptic  plasticity  and  strength  are  impacted  by  this
process [18]. Since lipid content affects the quantity and
structure  of  these  tiny  protrusions  on  neurons  that
establish  synaptic  contacts,  which  are  essential  for
synaptic  plasticity,  LPL  also  impacts  dendritic  spine
morphology  [19].  Furthermore,  LPL  is  involved  in
neurotrophic signaling pathways, such as those mediated
by  Brain-derived  Neurotrophic  Factor  (BDNF),  vital  for
synaptic  plasticity,  neuronal  survival,  and  cognitive
functions  [20].

3.  LIPOPROTEIN  LIPASE  AND  ALZHEIMER’S
DISEASE

Alzheimer's disease is a multifaceted brain illness that
progressively  impairs  memory,  behavior,  and  cognitive
abilities  [21].  It  is  characterized  by  several  hallmark
features, including the accumulation of Amyloid-beta (Aβ)
peptides,  which  form  plaques  that  obstruct  cell
communication  and  trigger  inflammation  [22].  These
plaques  contribute  to  brain  cell  damage  and  death  [23].
Moreover,  tau  protein  hyperphosphorylation  causes
neurofibrillary  tangles,  which  impair  neuronal  function
[24,  25].  The  loss  of  connections  between  brain  cells,
known as synaptic dysfunction, is another crucial feature
of  AD  that  impairs  communication  [26].  Prolonged
activation of glial cells, including astrocytes and microglia,
increases inflammation, deteriorates neuronal injury, and
speeds  up  the  course  of  disease  [27].  Oxidative  stress,
caused by an imbalance between Reactive Oxygen Species
(ROS)  and  antioxidants,  contributes  significantly  to
neuronal  damage.  Additionally,  disruptions  in  lipid
metabolism  play  a  pivotal  role  in  AD  by  affecting  cell
membrane  integrity  and  energy  balance  [28].

A key  player  in  managing  lipid  metabolism within  the
brain  is  lipoprotein  lipase,  essential  for  maintaining  cell
membrane health and ensuring an adequate energy supply.
LPL  is  expressed  in  various  brain  cells,  including
macrophages,  microglia,  and  Oligodendrocyte  Precursor
Cells  (OPCs)  [29].  Specific  genetic  variants,  such  as  the
S447X variant, are associated with increased LPL activity,
reduced levels of harmful lipoproteins, and fewer amyloid
plaques  [29].  This  connection  highlights  the  therapeutic
potential of targeting LPL to modify lipid metabolism in AD.
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LPL  actively  participates  in  Aβ  clearance.  Research
shows that it enhances microglial uptake and degradation
of  Aβ,  reducing  plaque  accumulation  and  minimizing
neuronal toxicity [30]. Dysregulation or mutations in LPL
are linked to increased AD risk and more severe disease
progression [29, 31]. The buildup of Aβ plaques correlates
with altered LPL levels in the brain, reflecting its critical
involvement in disease pathology [32].

Lipid signaling pathways influenced by LPL also affect
tau  pathology  by  modulating  the  formation  of
neurofibrillary  tangles  [33].  Inflammation  regulation  in
microglia  is  another  vital  function  of  LPL,  where
deficiencies  can  lead  to  heightened  inflammatory
responses  and  neuronal  damage  [34,  35].  LPL  helps
manage  oxidative  stress  by  balancing  lipid  metabolism,
thereby protecting brain cells from further damage [36].

Interestingly, LPL localizes around amyloid plaques in
the  brains  of  AD patients  [32].  It  regulates  High-density
Lipoprotein  (HDL),  cholesterol,  and  brain  lipid  levels.
Mutations  in  the  LPL  gene  are  strongly  associated  with
increased AD risk and are linked to impaired Aβ clearance
and exacerbated tau pathology [37-42].

Emerging studies also highlight LPL's involvement in
glial cell function. For instance, LPL enhances astrocyte-
mediated uptake of Aβ, aiding in removing toxic plaques
[43].  Similarly,  LPL  supports  microglial  metabolism  by
influencing microglia’s switch from oxygen to glucose for
ATP  production,  a  process  critical  for  efficient  Aβ
clearance  [44].

Targeting LPL pathways offers promising therapeutic
opportunities for AD. Increasing LPL activity or mimicking
its  effects  could  help  alleviate  oxidative  stress,  reduce
inflammation, and enhance Aβ and tau clearance. Potential
interventions  may  include  dietary  modifications,
pharmacological treatments, and gene therapy to optimize
lipid metabolism. Further research on LPL-based therapies
could  significantly  advance  treatment  options  for
Alzheimer's  disease.

4. GENETIC AND ENVIRONMENTAL INFLUENCES
Lipoprotein  lipase,  a  key  player  in  brain  function,

regulates  neuronal  lipid  homeostasis,  synaptic  function,
and  plasticity.  The  activity  of  LPL  in  the  brain  is
modulated by both genetic and environmental factors, and
their interplay is crucial for neurological health.

4.1. Genetic Variants Affecting LPL Activity
Genetic  variants  have  a  profound  impact  on  LPL

activity,  influencing  lipid  metabolism  and  brain  function
[45]. Polymorphisms in the LPL gene can lead to altered
enzyme  activity,  affecting  lipid  uptake  and  utilization  in
neurons [46]. For instance, specific variants are associated
with reduced LPL activity, leading to impaired fatty acid
availability  and  altered  neuronal  membrane  composition
[47].  These  genetic  differences  can  contribute  to
variability  in  cognitive  function  and  susceptibility  to
neurological  disorders  [48].  Research  has  identified
specific  Single  Nucleotide  Polymorphisms  (SNPs)  in  the
LPL  gene  that  correlate  with  conditions,  such  as

Alzheimer's disease [29], highlighting the profound impact
of genetic influences on LPL function in the brain.

4.2.  Environmental  Factors  Modulating  LPL
Expression

Environmental factors play a crucial role in controlling
brain  activity  and  expression  of  LPL.  The  function  and
levels of LPL can be significantly influenced by exposure
to pollutants, physical activity, and diet. A diet high in fats
can increase LPL expression to facilitate lipid metabolism.
At  the  same  time,  physical  exercise  has  been  shown  to
enhance LPL activity, promoting efficient lipid utilization
and  energy  production  in  neurons  [49].  Conversely,
exposure to environmental toxins, such as heavy metals or
pollutants,  can  impair  LPL  function,  disrupting  lipid
homeostasis  and  neuronal  health.  Chronic  stress  is
another  environmental  factor  that  can  negatively  affect
LPL  activity,  potentially  exacerbating  neurological
conditions  by  disrupting  lipid  metabolism  [50].

4.3. Interaction between Genetics and Environment
in Neurological Health

The intricate interplay of hereditary and environmental
factors  significantly  determines  neurological  health.
Genetic  predispositions  can  modulate  the  impact  of
environmental factors on LPL activity and brain function
[51].  For instance,  individuals  with genetic  variants  that
reduce  LPL  activity  may  be  more  susceptible  to  the
adverse effects of a high-fat diet or environmental toxins.
Conversely,  favorable  genetic  variants  may  enhance  the
protective effects of beneficial environmental factors, like
physical exercise. This connection also involves epigenetic
alterations, like DNA methylation and histone acetylation,
which  can  change  the  expression  of  the  LPL  gene  in
response to environmental cues [52]. Comprehending the
complex  interaction  between  heredity  and  the
environment  is  essential  for  creating  customized
strategies  to  preserve  and  enhance  neurological  well-
being.

To  summarize,  genetic  and  environmental  variables
influence lipoprotein lipase activity in the brain, which has
significant  consequences  for  synapse  function,  neuronal
lipid homeostasis, and plasticity. The intricate relationship
between  these  variables  emphasizes  how  crucial  it  is  to
consider  environmental  exposures  and  genetic
predispositions  when  assessing  brain  health.

5.  EXPERIMENTAL  MODELS  AND  CLINICAL
STUDIES

Research  into  the  role  of  lipoprotein  lipase  in
neurological  disorders,  using  experimental  models  and
clinical  studies,  is  not  only  aimed  at  elucidating  its
mechanisms, but also at identifying potential therapeutic
targets that could bring hope to patients.

Animal  models,  particularly  rodents,  have  played  a
pivotal role in advancing our understanding of lipoprotein
lipase  functions  in  the  brain  and  its  implications  for
neurological  disorders.  Transgenic  mice  with  targeted
deletions  or  overexpression  of  the  LPL  gene  in  specific



4   The Open Biomarkers Journal, 2024, Vol. 14 Althaher and AL Shehadeh

brain  regions  have  been  instrumental  in  uncovering  the
enzyme's  role  in  neuronal  lipid  metabolism and synaptic
function.  Studies using these models  have demonstrated
that  altering  LPL  expression  impacts  lipid  homeostasis,
synaptic plasticity, and cognitive performance [53].

To  achieve  precise  modifications  in  gene  expression,
researchers commonly employ advanced techniques, such
as  CRISPR/Cas9  for  gene  editing,  Cre-loxP  systems  for
conditional  knockouts,  and  RNA  interference  (RNAi)  for
gene silencing [54]. These approaches enable the creation
of  animal  models  tailored  to  study  the  neurological
consequences of altered LPL function. Additionally, these
models  help  link  LPL  dysregulation  to  conditions,  like
Alzheimer's  disease  and  other  neurodegenerative
disorders,  providing  insights  that  inform  potential
therapeutic  strategies.

For instance, LPL knockout mice have shown deficits
in learning and memory,  shedding light on the enzyme's
involvement  in  cognitive  processes.  These  models  have
been  instrumental  in  understanding  the  effects  of  LPL
deficiency  on  brain  development  and  function,  and  in
assessing  potential  therapeutic  interventions  targeting
LPL activity. Electrophysiological assays (e.g., patch-clamp
recordings)  and  optogenetics  are  commonly  used  to
examine  neuronal  signaling,  while  MRI  and  PET  scans
provide  non-invasive  means  to  observe  structural  and
functional  changes  in  the  brain  [55].

Table  1.  Studies  involving  animal  models
investigating  the  role  of  lipoprotein  lipase  in
neurological  disorders.

Animal Models Findings Ref.

Genetically modified mice
with neuron-specific
Lipoprotein Lipase (LPL)
deficiency

Impaired cognitive functions, altered
neuronal signaling, disrupted lipid
profiles, and glucose homeostasis

[6]

Double-transgenic mice
involving lipoprotein lipase
and Amyloid Precursor
Protein (APP)

Reduced amyloid-beta burden and
improved memory function [60]

LPL knockout mice
Decreased AMPA receptor
phosphorylation, impaired synaptic
function, and neurobehavioral
abnormalities

[61]

LPL knockout mouse model

Aggregation of α-synuclein and a
decrease in ubiquitin C-terminal
hydrolase L1 disrupting protein
homeostasis and neuronal function,
potentially leading to
neurodegenerative conditions

[62]

Table 1 shows some studies that collectively highlight
the critical roles of lipoprotein lipase in neuronal function,
lipid  metabolism,  and  the  potential  development  of
neurodegenerative  conditions.  Genetic  modifications  in
animal  models  have  provided  insights  into  how  LPL
deficiency  or  overexpression  can  impact  cognitive
functions, synaptic health, and susceptibility to diseases,
like Alzheimer's and Parkinson's. These studies often use
biochemical  assays  measuring  changes  in  lipid  profiles,
lipidomic  analyses,  and  enzyme  activity.  Furthermore,
western  blot  analysis,  immunohistochemistry,  and  mass

spectrometry  are  employed  to  assess  molecular  and
protein alterations linked to LPL function in the brain [56].

On the other hand, clinical studies have explored the
association between LPL activity and Alzheimer's disease,
a  prevalent  neurodegenerative  disorder.  Reduced  LPL
activity  has  been  observed  in  the  brains  of  AD  patients,
suggesting a link between impaired lipid metabolism and
disease pathology. A study conducted by Gong et al. [57]
showed  that  LPL  is  significantly  associated  with  neurite
pathology  in  Alzheimer's  disease,  with  its  levels  being
markedly reduced in the dentate gyrus of affected brains.
This  reduction  in  LPL  may  contribute  to  the
neurodegenerative  processes  and  cognitive  decline
observed  in  AD.  Imaging  techniques,  such  as  PET scans
and  Cerebrospinal  Fluid  (CSF)  biomarker  analysis,  are
often employed in clinical settings to track LPL levels and
correlate them with disease progression. Genetic studies
have identified polymorphisms in the LPL gene that may
increase  the  risk  of  developing  AD,  highlighting  the
enzyme's potential as a biomarker for early diagnosis and
as a target for therapeutic strategies [6, 58, 59].

Previous studies have provided valuable insights into
the  role  of  lipoprotein  lipase  in  neurological  disorders,
such  as  its  effects  on  cognitive  function,  neuronal
signaling, and lipid metabolism. However, several critical
gaps still need to be addressed, including a limited focus
on  LPL  regulation  in  neurodegeneration,  a  narrow
exploration of lipid-related signaling pathways, and a lack
of  investigation  into  its  effects  on  neurogenesis  and
synaptic plasticity. While past research has concentrated
on  specific  aspects,  like  amyloid-beta  accumulation  and
synaptic dysfunction, it has not thoroughly examined LPL's
involvement in broader lipid-derived signaling molecules,
neuroinflammation,  or  myelin  production.  Our  study  has
addressed  these  gaps  by  examining  how  LPL  regulation
influences  a  broader  range  of  lipid  signaling  pathways,
neuroinflammation,  and  synaptic  plasticity,  offering  new
insights  into  the  enzyme's  role  in  neurodegenerative
diseases and suggesting potential therapeutic strategies.
This novel approach may contribute to an understanding
of LPL's multifaceted role in neurological health.

6.  LIMITATIONS  AND  CHALLENGES  IN  CURRENT
RESEARCH

Despite  the  progress  in  understanding  LPL's  role  in
the  brain,  several  limitations  and  challenges  persist  in
current  research.  One  significant  drawback  is  the
difficulty  in identifying the precise effects  of  LPL on the
brain  due  to  its  intricate  regulation  and  wide  range  of
actions  in  various  tissues  [63].  Additionally,  animal
models, while informative, do not fully replicate the human
condition,  and  findings  may  only  sometimes  translate  to
clinical outcomes. Human studies are often constrained by
genetic  background  variability,  environmental  exposure,
and  lifestyle  factors,  which  can  confound  results.
Furthermore,  the  mechanisms  by  which  LPL  influences
neurodegenerative  processes  remain  incompletely
understood,  necessitating  further  research  to  unravel
these  complex  pathways.  The  development  of  advanced
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models  and  methodologies,  along  with  interdisciplinary
approaches, is essential to overcome these challenges and
advance our  understanding of  LPL's  role  in  neurological
health.

In summary, experimental models and clinical studies
provide valuable insights into the role of lipoprotein lipase
in neurological disorders, particularly Alzheimer's disease.
Although  there  has  been  considerable  progress,  more
study  is  still  required  to  address  the  obstacles  and
restrictions,  which  could  eventually  lead  to  improved
methods  for  treating  and  preventing  neurodegenerative
disorders.

7.  THERAPEUTIC  POTENTIAL  AND  STRATEGIES
TARGETING  LPL  FOR  ALZHEIMER'S  DISEASE
TREATMENT

7.1.  Targeting  LPL  for  Alzheimer's  Disease
Treatment

Because  of  lipoprotein  lipase's  complex  roles  in
inflammation,  lipid  metabolism,  and  Amyloid-beta  (Aβ)
clearance,  all  of  which  are  essential  to  AD  pathology,
targeting  LPL  for  AD  treatment  has  attracted  much
attention  [6,  8].  To  preserve  the  health  and  function  of
neurons, LPL plays a critical role in removing circulating
triglycerides  and  controlling  the  distribution  of  lipids  in
the  brain.  The  characteristic  of  Alzheimer's  disease  is
dysregulation of lipid metabolism, which is associated with
reduced LPL activity and can cause neuronal damage and
cognitive loss.

LPL,  expressed  in  neurons  and  microglia,  is  a  key
player  in  controlling  inflammatory  responses  and  is  a
significant factor in AD development. Research has shown
that  increased  LPL  activity  can  effectively  reduce
neuroinflammation, thereby slowing the progression of the
disease  [8,  64].  Furthermore,  LPL  aids  glial  cells  in
binding,  absorbing,  and  degrading  Aβ  peptides,  thereby
reducing their accumulation in the brain, a critical step in
AD development [9].

LPL  is  critical  for  maintaining  cholesterol  and  fat
metabolism,  preventing  lipid  droplet  formation,  and
promoting energy production in microglia, in addition to
its function in the clearance of Aβ. The survival of neurons
and the integrity of the central nervous system depend on
these  processes  [65].  In  addition,  LPL  provides
neuroprotection  and  promotes  CNS  repair  by  activating
the  Peroxisome  Proliferator-activated  Receptor  (PPAR).
The  dual  function  of  LPL  in  inflammation  and  lipid
metabolism suggests that it may be a valuable target for
treating  neurodegenerative  illnesses,  like  Alzheimer's.
Promising  approaches  for  slowing  AD  and  improving
cognitive results may come from emerging treatments that
increase LPL activity or combine it with PPAR isomers [8].

7.2.  Current  Therapeutic  Approaches  and  Clinical
Trials

Multiple  strategies  for  treating  Alzheimer's  disease
include  pharmacological  manipulation  of  lipoprotein
lipase. One such approach uses LPL activators, biologics,

or  small  molecules  to  improve  lipid  metabolism,
counteract inflammation, and promote Amyloid-beta (Aβ)
clearance. However, it is difficult to develop targeted and
effective  LPL  activators  because  lipid  metabolism  is
complex,  high  selectivity  is  needed  to  avoid  off-target
effects,  and  there  are  many  difficulties  in  crossing  the
blood-brain barrier [66].

In  the  future,  gene  therapy  using  state-of-the-art
technology  may  provide  new  possibilities  for  treating
disease.  Viral  vectors  or  CRISPR/Cas9  gene  editing
techniques  may  change  AD  treatment  by  directly
enhancing  LPL  expression  in  the  brain  [67].

Lipid-modifying  drugs  that  indirectly  affect  LPL
function have been studied because of clinical trials done
on them for Alzheimer's disease, especially those targeting
Peroxisome Proliferator-activated Receptors (PPARs) [68].
This progress should boost confidence in ongoing efforts
for Alzheimer's disease research.

According  to  Tobeh  and  Bruce  [69],  researchers  are
working  on  identifying  the  individual  LPL  modulators,
determining  their  effectiveness,  and  screening  and
assessing  their  safety  in  respective  preclinical  animal
models.  The  goal  is  the  development  of  promising
candidates for clinical trials.  These are enough and very
promising boreholes as far as the future of AD treatment is
concerned.

Moreover, LPL is stimulated by thyroid hormone, and
equally,  LPL  is  essential  for  fat  metabolism.  Evidence
shows  that  elevating  blood  fat  levels  due  to  decreased
thyroid  activity  may  enhance  the  possibility  of  a  person
having Alzheimer's disease. Aerobic exercise enhances the
activity of LPL, which promotes the decomposition of fats
and protects an individual from low thyroid activity, hence
protecting  an  individual  from  Alzheimer's  disease  [70].
There is, however, another close link to this disease, which
is obesity. Researchers have recently discovered a natural
compound  called  scopolin  that  is  essential  in  breaking
down fat by inhibiting the formation of fat cells, a process
regulated  by  LPL.  By  preventing  weight  gain  and
hindering the process of fat cell formation, scopolin may
help protect against Alzheimer's disease [71].

7.3. Future Directions in LPL-based Therapies
Advancing lipoprotein lipase targeting for Alzheimer's

disease  holds  significant  promise.  Understanding  the
molecular mechanisms that regulate LPL expression and
activity  in  the  brain  is  a  crucial  step  toward  designing
effective therapies [32].  The identification of biomarkers
for  LPL  activity  could  revolutionize  patient  stratification
and  treatment  monitoring.  The  potential  synergy  of  LPL
modulators  with  other  therapies,  such  as  anti-
inflammatory  agents,  Aβ-targeting  antibodies,  or  lipid-
lowering  drugs,  offers  hope  for  enhanced  treatment
efficacy.  Personalized  medicine  approaches  tailored  to
individual  genetic  and  metabolic  profiles  could
significantly  improve  outcomes  [72].

Advanced  drug  delivery  systems,  including
nanotechnology  for  targeted  brain  distribution  and
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techniques to improve blood-brain barrier penetration, are
essential for enhancing bioavailability and minimizing side
effects [73]. Long-term research is necessary to evaluate
the  safety  and  effectiveness  of  LPL-targeted  treatments,
focusing on their impact on biochemical markers, imaging
outcomes, and cognitive function.

LPL  is  also  recognized  as  a  protective  agent  against
brain  injury  in  AD  by  modulating  synaptic  loss  and
restructuring. Additionally, LPL binds to Amyloid-beta (Aβ)
protein  and  promotes  its  uptake,  making  it  a  significant
target  for  drug  therapy  [74].  Emerging  therapeutic
strategies include gene therapy to substitute the LPL gene
and  compounds  that  elevate  LPL  mRNA,  protecting  LPL
from inhibition by Angiopoietin-like 4 (ANGPTL4), such as
the N-phenylphthalimide derivative 50F10 [70].

In  summary,  LPL  targeting  represents  a  promising
therapeutic  approach  for  AD.  Although  still  in  the  early
stages,  the  need  for  continued  research  and  innovative
strategies is paramount. This commitment may eventually
lead to effective treatments for this debilitating disease.

CONCLUSION
Lipoprotein lipase plays a pivotal  role in maintaining

brain  health,  with  its  dysregulation  being  implicated  in
Alzheimer’s  disease  due  to  disrupted  lipid  homeostasis,
increased neuroinflammation, and inadequate clearance of
Amyloid-beta  (Aβ).  Enhancing  LPL  activity  could
potentially  address  these  underlying  issues.  Current
therapeutic  strategies  focus  on  pharmacological
approaches and gene therapies aimed at  activating LPL,
with  ongoing  clinical  trials  evaluating  lipid-modifying
agents. Future research will be crucial in unraveling the
molecular  regulation  of  LPL,  developing  targeted
activators,  and  optimizing  clinical  trial  designs.  These
efforts,  particularly  through  multi-modal  treatment
approaches,  hold  promise  for  personalized  therapeutic
options that could significantly improve AD management
and patient outcomes.
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