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Abstract:

Introduction:

During pregnancy, maternal lipid metabolism undergoes several transformations originated by hormonal changes. There are two distinct phases:
initial and late, finally driven to hypertriglyceridemia. Maternal hyperlipidemia, especially hypertriglyceridemia, is associated with an increased
hepatic very-low-density lipoprotein (VLDL) synthesis stimulated by high estrogen levels during gestation.

Objectives:

This study aimed to evaluate the action of possible lipoproteins remodeling modulators, such as phospholipid and cholesteryl-ester transfer proteins
(PLTP and CETP), paraoxonase-1 (PON-1), and apolipoproteins (apo), during gestation.

Methods:

An observational prospective cohort study composed of 40 pregnant women was conducted. Blood samples were collected in two moments: at the
first  and  third  trimesters  of  gestation,  followed by  the  biochemical  determination  of  apo  A-I,  apo  B,  lipid  profile,  PON-1,  PLTP and CETP
activities, and HDL particle size.

Results:

The majority of pregnant women in the third trimester showed dyslipidemia, mainly hypertriglyceridemia. In the third trimester of gestation, we
observed an increase in CETP activity (70.5 ± 9.6 pmol/µL/h; p <0.001) and TG/HDL-C ratio (2.7 [2.0-3.8]), but on the other hand, PON-1 activity
(65.4 [46.5-105] nMol of p-nitrophenol/min/mL) decreased. High-density level lipoprotein (HDL) particle size and PLTP activity did not differ in
the two studied moments. The serum triglyceride concentration and CETP activity showed a positive linear correlation in the first trimester of
gestation (r2=0.65, p<0.001).

Conclusion:

Data suggest that the CETP activity, antioxidant profile, and low-density lipoprotein (LDL) remodeling are modified by physiological metabolic
changes during an uncomplicated gestational period.
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1. INTRODUCTION

During  pregnancy,  maternal  lipid  metabolism  undergoes
several transformations originated by hormonal changes [1, 2].
There are two distinct phases: an initial phase characterized by
an accumulation of fatty acids, resulting from the deposition of
triglycerides (TG) in maternal adipose tissue, and the late phase
characterized by the accelerated catabolism of adipose tissue,
with the increased availability of fatty acids and glycerol in the
circulation,  generating  hepatic  very-low-density  lipoprotein
(VLDL)  secretion  and  hypertriglyceridemia  [3].  Maternal
hyperlipidemia,  especially  hypertriglyceridemia,  may  be
associated  with  the  increased  hepatic  synthesis  of  VLDL
originated by a high concentration of estrogen during gestation
and  the  reduction  of  TG-rich  lipoproteins  catabolism  due  to
low activity of lipoprotein lipase (LPL) and hepatic lipase (LH)
[4 - 6].

Hypertriglyceridemia during pregnancy is responsible for
modifying  different  pathways  of  lipid  and  lipoprotein
metabolism. Besides increased cholesteryl ester transfer protein
(CETP)  activity,  some  studies  have  shown  alterations  in  the
composition  and  size  of  lipoproteins,  such  as  higher  TG
content and the formation of smaller and denser particles [7, 8].
The accumulation of small and dense low-density lipoprotein
(LDL)  during  gestation  increases  the  risk  of  endothelial
damage  and  oxidative  stress  [2].

The  evaluation  of  high-density  lipoprotein  (HDL)
functionality, together with serum HDL-cholesterol (HDL-C),
is essential for a cardiovascular risk assessment [9, 10]. These
protective characteristics can be altered in the presence of pro-
inflammatory  conditions  and  diverse  modifications,  such  as
oxidative changes [11]. A considerable cardiovascular risk may
exist  even  with  conditions,  such  as  a  high  HDL  cholesterol
concentration, and therefore, the analysis of HDL metabolism
biomarkers, such as apolipoprotein (apo) A-I, and HDL particle
size, must be performed [11].

Maternal  hyperlipidemia  may  be  associated  with  the
development  of  maternal-fetal  complications  (preterm  birth,
preeclampsia, vascular complications) and the development of
cardiovascular diseases in the long term [3, 4]. The evolution
of  pregnancy  represents  an  early  opportunity  to  identify  the
presence  of  cardiovascular  risk  biomarkers  [12].  Studies
suggest  that  gestation  constitutes  a  “stress  test”  for  the
metabolic  pathways  of  carbohydrates  and  lipids.  Besides
causing  inflammatory  biomarkers  hyperregulation,  it  also
changes  vascular  function.  Thus,  this  period  may  be  an
adequate  time  for  the  long-term  prediction  of  hemodynamic
complications [13 - 15].

The  purpose  of  the  present  study  was  to  evaluate  the
lipoprotein  modulators,  lipoprotein  particle  quality,  and
functionality  during  uncomplicated  pregnancy.
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2. MATERIALS AND METHODS

2.1. Patients

An observational  prospective  cohort  study,  comprised of
40 pregnant women selected by convenience, aged between 18
and  38  years,  attended  at  the  Climério  de  Oliveira  Hospital
Maternity,  Federal  University  of  Bahia  (UFBA),  Brazil,
underwent prenatal follow-up between August 2014 and July
2015. The pregnant women were informed about the study and
signed  the  Free  Prior  Informed  Consent  Form  (FPIC).  A
socioeconomic and epidemiological questionnaire was used to
address the information about cardiovascular risk factors, such
as  a  sedentary  lifestyle,  alcohol  consumption,  smoking,  a
family history of cardiovascular diseases, use of medicines, and
hypertension.  Blood  samples  were  obtained  after  12-hour
fasting  on  two  occasions:  in  the  first  and  third  trimester  of
gestation. This study was approved by the Climério de Oliveira
Hospital  Maternity  Research  Ethics  Committee  (UFBA)
(CEP/MCO/UFBA), according to the registration and additive
resolution nº 103/2005 and nº029/2014, respectively.

Inclusion  criteria  were  pregnant  women  in  the  first
trimester  of  gestation,  followed  under  prenatal  care  at  the
Climério de Oliveira Hospital Maternity (UFBA), with a low-
risk pregnancy, and signing the Free Prior Informed Consent
Form.

Exclusion  criteria  were  women  presenting  with  hepatic
dysfunction,  with  alanine  aminotransferase  (ALT)  and
aspartate  aminotransferase  (AST)  concentrations  higher  than
twice  the  upper  reference  limit;  renal  dysfunction  (serum
creatinine  >2.0  mg/dL),  thyroid  dysfunction,  and  diabetes
mellitus.

To find a predictive number of women with uncomplicated
pregnancies, following all restrictions applied to human ethics,
our calculated population sample size was 40 cases. The blood
samples were obtained on two gestational occasions, at the first
and third trimesters,  reaching 80 samplings.  The sample size
calculation conditioned an 80% (1-beta) predictive minimum
statistical  power  to  find  4  unit  differences  in  paraoxonase
activity at a maximum of 10% variation between pre and post-
tests.  The  sample  size  calculations  were  performed  with
WINPEPI for Windows, version 11.48 (Joe Abramson, PEPI;
programs for epidemiologists),  and the predictive power was
estimated with StatMate 2 for Windows, version 2.0 (GraphPad
Software, inc, 1992-2004).

2.2. Biochemical Determinations

Blood samples were obtained after 12 hours of fasting. The
biochemical  determinations  were  performed  by
spectrophotometry, kinetic, and colorimetric methods using the
automated  equipment  METROLAB  2300  (Wiener  Lab,
Argentina)  in  plasma  and/or  serum  samples.  The  LDL-
cholesterol  levels  were  estimated  by  the  Friedewald  formula
[16],  and  VLDL-cholesterol  was  calculated  as  triglycerides
level divided by 5.

2.3. PLTP and CETP Activity

Plasma PLTP and CETP activities were determined using a
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fluorescence-based  assay  kit  (BioVision  Inc.  USA).  Plasma
PLTP  and  CETP  activities  were  expressed  by  picomoles  of
neutral  lipid  transferred  per  microliter  of  plasma  per  hour
(pmol/µL/h).  To  determine  the  activities  of  the  transfer
proteins,  we  used  an  EnVision®,  Multilabel  Reader  2104
(PerkinElmer,  USA).

2.4. PON-1 Activity

The  paraoxonase  1  (PON-1)  activity  was  measured
according to Charlton-Menys et al. [17], Senti et al. [18], and
Oliveira et al. [19] using 140 µL of 0.1 M Tris-HCl (pH 8.5,
containing  2mmoL/L  CaCl2,  paraoxon  1.1  mmoL/L,  Sigma
Chemical  Co.)  and 7µL of  serum.  Samples  were  pipetted  by
duplicate  to  run  into  a  96-well  ELISA  plate.  Readings  were
made at 405nm, 37 °C, using a Microplate Reader (Benchmark,
Bio-Rad,  USA).  For  activity  calculation,  six  readings  were
made  at  intervals  of  one  minute  each,  and  results  were
calculated  by  multiplying  the  obtained  factor  by  the  average
absorbance  variation  (PON-1  activity  =  Factor  x  Δ
Absorbance/minute).

2.5. Apo B and Apo A-I Concentration

The  apo  B  and  apo  A-I  levels  were  measured  by
immunonephelometry  using  an  automated  analyzer
IMMAGE® (Beckman Coulter, USA), by the measurement of
light scattered or reflected when radiant energy passed through
a solution and encountered a molecule on elastic collision. The
resultant light was detected in a different path than the directly
transmitted light.

2.6. HDL Particle Size

The HDL particle size diameters were measured by laser
light scattering (LLS) using a Zetasizer Nano ZSP (Malvern,
United Kingdom) as previously described by our group, Lima
and Maranhão [20] and Santos et al. [21]. EDTA plasma was
obtained by tube centrifugation for 15 min at 1250g. For the
isolation  of  HDL,  500uL  of  precipitating  solution  of
polyethylene  glycol  (PEG)  8000  (400  g/L),  in  0.2  mol/L
glycine buffer adjusted to pH 10, in 500uL of EDTA plasma.
Samples  were  vigorously  mixed  for  30  seconds  and  then
centrifuged  for  10  minutes  at  1800g  for  apo  B-containing
lipoprotein  precipitation.  A  500uL supernatant  was  added  to
1.5 mL of  NaCl (10 mmol/L) and passed through a 0.22 μm
filter  (Millipore  Products  Division)  to  exclude  undesirable

particles  and  dispensed  into  the  equipment  cuvette.  The
scattered light  was collected at  an angle  of  90˚  by a  photon-
counting  photomultiplier  tube  directed  to  an  equipment
correlator.  The  sample  results  were  expressed  as  the  mean
particle size, a harmonic intensity-averaged particle diameter.
All experiments were performed at 22˚C, and the resultant data
were expressed employing ten runs of 1 minute each.

2.7. Estimation of LDL Particle Size

The  LDL  particle  size  was  estimated  by  using  the
TG/HDL-C  ratio.  A  ratio  higher  than  2.0  was  considered
indicative  of  sdLDL  (≤25.5nm)  [22].
2.8. Statistical Analyses

Descriptive  and  inferential  statistical  analysis  was
performed.  In  the  first  step,  centrality  and  dispersion
measurements were calculated, and afterward, the D´Agostino
test  was  used  to  test  the  type  of  data  distribution  around the
mean. According to the type of data distribution, the tests for
inferential  analysis  were  chosen,  such  as  paired  t-test  or
Wilcoxon one-way test,  by prior  hypothesis  postulation.  The
paired  t-test  was  used  to  analyze  the  following  parameters:
glucose,  urea,  ALT,  lipid  profile,  apolipoproteins,  HDL-
particle  size,  PLTP,  and  CETP  activity,  and  the  risk  ratios
(LDL-C/apo  B,  HDL-C/apo  A-I,  and  apo  B/apo  A-I).  The
Wilcoxon test was used to analyze PON-1 activity, TG/HDL-C
ratio, creatinine, AST, CRP, hematocrit, and hemoglobin. The
Pearson coefficient was used to calculate the linear correlation
between  plasmatic  triglyceride  concentration  and  CETP
activity in the first and third trimesters of gestation. We also
performed an association analysis (Fisher test) to evaluate the
differences  between proportions  of  the  main factors  and risk
biomarkers  for  coronary  artery  disease  (CAD)  and  the  main
outcome considered, the development of hypertriglyceridemia.

For  outlier  detection,  Grubb´s  test  was  employed.  All
tested data were considered significant when the critical value
(p)  was  under  0.05  to  a  confidence  interval  of  0.95.  The
statistical analyses were performed at GraphPad Prism version
5.01 (USA) statistical packages.

3. RESULTS

The general characteristics and socioeconomic descriptive
data from the study participants are shown in Table 1. Fig. (1)
shows the observed frequency of the main risk factors for CAD
development before becoming pregnant.

Table 1. General characteristics and socioeconomic data from the study participants (n=40).

Characteristics
Sample size (n)
Gestational age:

First trimester
Third trimester

40

10 ± 2
32 ± 3

Age (years) 28 ± 7
Civil status:

Married
Single

23 (57.5%)
17 (42.5%)
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Characteristics
Ethnicity:

White
Black
Mixed

3 (7.5%)
18 (45.0%)
19 (47.5%)

Number of gestations:
1
2
3

26 (65.0%)
13 (32.5%)
1 (2.5%)

Education:
Basic education

High school
Higher education

2 (5.0%)
31 (77.5%)
7 (17.5%)

Monthly income:
Family Dependents

1 Basic salary
>1 Basic salary

20 (50%)
16 (40%)
4 (10%)

Note: Results are expressed by mean ± standard deviation or number of patients (%). First trimester: up to 12 weeks of gestation, Third trimester: from 27 weeks of
gestation.

Fig. (1). The observed risk factors for CAD in the study participants at the first and third trimesters of gestation. Frequency was obtained from the
analysis of the data by interviewing the study participants.

Table 2. Biochemical and hematological parameters of the study participants at the first and third trimesters of gestation.

Variables 1° Trimester 3° Trimester P
Glucose (mg/dL) a 83 ± 8 84 ± 8.0 Ns

Urea (mg/dL)a 13.3 ± 4.4 15.6 ± 4.1 **

Creatinine(mg/dL)b 0.7 (0.6-0.7) 0.7 (0.5-0.8) Ns

AST (U/L)b 16 (13-21) 16 (13-20) Ns

ALT (U/L)a 14.6 ± 5.2 10.9 ± 3.8 ***

CRP (mg/dL)b 5.5 (3.2-13.5) 9.6 (7.0-14.5) **

Hb (mg/dL)b 12 (11.7-12.6) 11.7 (11.1-12) ***

Htc (%)b 35.2 (34.4-36.1) 34.6 (34-35.9) ***
Note: AST: aspartate aminotransferase, ALT: alanine aminotransferase, CRP: C-reactive protein, Hb: hemoglobin, Htc: hematocrit. First (1º) trimester: up to 12 weeks of
gestation; third (3º) trimester: from 27 weeks of gestation.a D´Agostino and Pearson linear correlation tests, mean and standard deviation (mean ± SD), n=40, paired t-test.
bD´Agostino and Pearson linear correlation tests, median and IQR (25%-75%), Wilcoxon test. ns: not significant. *** p< 0.0001, ** p<0.001.

Table  2  shows  the  biochemical  and  hematological
parameters  in  the  first  and  third  trimesters  of  gestation,
performed to evaluate the pregnant women’s health status. The
levels  of  urea  and  CRP  increased  (p<0.001),  while  ALT,
hemoglobin, and hematocrit decreased (p<0.0001) during the
gestation.

Table 3 shows the lipid profile and the serum concentration
of apolipoproteins in the first and third trimesters of gestation.
Data  show  the  development  of  dyslipidemia  in  the  first  and
third  trimesters,  represented  by  increased  LDL-C  and
triglycerides  levels  (p<0.0001).  There  was  also  a  significant
increase  in  the  number  of  antiatherogenic  and  atherogenic
particles, addressed by the apolipoprotein values (p<0.0001).

(Table 1) contd.....
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Table  3.  Lipid  profile  and  apolipoproteins  concentration  of  the  study  participants  at  the  first  and  third  trimesters  of
gestation.

Lipid Profile 1 ° Trimester 3° Trimester P Reference Value*
Total cholesterol (mg/dL) 164 ± 26 214 ± 43 *** < 190

Triglycerides (mg/dL) 95 ± 32 180 ± 70 *** < 150
HDL-C (mg/dL) 59 ± 9 59 ± 10 Ns > 40
LDL-C (mg/dL) 86 ± 22 118 ± 37 *** < 130

VLDL-C (mg/dL) 19 ± 6 36 ± 14 *** < 30
Apo A-I (mg/dL) 190.3 ± 24.1 220.6 ± 35.5 *** 100 a 200
Apo B (mg/dL) 110.7 ± 34.3 149.5 ± 47.8 *** 50 to 155

Note: HDL-C: High-density lipoprotein cholesterol, LDL-C: Low-density lipoprotein cholesterol, VLDL-C: very Low-density lipoprotein cholesterol, apo: apolipoprotein,
first (1º) trimester: up to 12 weeks of gestation, third (3º) trimester: from 27 weeks of gestation, ns: not significant. *Reference value for non-pregnant women (Beckman
Coulter, USA). D’Agostino and Pearson tests, mean and standard deviation (mean ± SD), n=40, paired t-test. *** p< 0.0001.

Table 4. Calculated cardiovascular risk ratios of the study participants at the first and third trimesters of gestation.

Risk Ratio 1° Trimester 3° Trimester P
apo B/apo A-I 0.58 ± 0.2 0.68 ± 0.2 *

HDL-C/apo A-I 0.29 ± 0.02 0.25 ± 0.04 ***
LDL-C/apo B 0.78 ± 0.13 0.83 ± 0.21 ns

Note: Apo: apolipoprotein, HDL-C: High-density lipoprotein cholesterol, LDL-C: low density lipoprotein cholesterol, first (1º) trimester: up to 12 weeks of gestation; third
(3º)  trimester:  from 27 weeks of  gestation.  D’Agostino and Pearson linear  correlation tests,  mean and standard deviation (mean ± SD),  n=40,  paired t-test.  ns:  not
significant, *** p< 0.0001, * p<0.01.

Table  4  shows  the  calculated  cardiovascular  risk  ratios
used to estimate lipoprotein remodeling and composition and
the  number  of  circulating  particles  as  suggestive  markers  of
cardiovascular  risk.  Apo B/apo A-I  ratio  increased  (p<0.01),
and HDL-C/apo A-I decreased (p<0.0001) in the third trimester
of gestation.

As  shown  in  Fig.  (2),  the  CETP  activity  significantly
increased in the first and third trimesters of gestation (56.6±5.4
to  70.5±9.6  pmol/µL/h,  p<0.0001).  On  the  other  hand,  the
PLTP activity did not show significant differences between the
evaluated  periods  (28.9  ±  6.8  and  27.2  ±  9.1  pmol/µL/h,
respectively).

Fig.  (3)  shows  the  linear  correlation  analysis  between
serum TG and CETP activity in the first  (r2 = 0.70,  Pearson
correlation test, p<0.0001) and third trimesters of gestation (r2
= 0.33, Pearson correlation test, p=0.0209).

As shown in Fig. (4), there were no significant differences
between HDL particle size in the first and third trimesters of
gestation (11.78±1.2 and 11.8±1.0 nm).

To evaluate the mean size of circulating LDL particles, the
TG/HDL-C ratio was used. A value above 2.0 is an indicator of
small and dense LDL particle predominance [22]. TG/HDL-C
ratio in the first (1.3; 1.2-2.0) and third (2.7; 2.0-3.8) trimesters
of gestation shows significant differences (p<0.0001) (Fig. 5).

Fig. (2). Activity of cholesterol ester transfer protein (CETP) (left), and the phospholipid transfer protein (PLTP) (right) of the study participants at
the first and third trimesters of gestation. n=40. D´Agostino and Pearson linear correlation tests, paired t-test. Data are shown as mean±SD. Not
significant (ns), *** p<0.0001.
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Fig.  (3).  Linear  correlation  between  serum triglycerides  (TG)  concentration  and  cholesterol  ester  transfer  protein  (CETP)  activity  in  the  study
participants at the first (A) and third trimesters (B) of gestation. n= 40. Pearson linear correlation tests, one-way analysis.

Fig. (4). HDL particle size at the study participants at the first and third trimesters of gestation. n=40. D´Agostino and Pearson linear correlation tests,
paired t-test. Data are shown as mean ± SD. ns: not significant.

Fig. (6) shows the PON-1 antioxidant activity. There was a
significant decrease in PON-1 activity from the third trimester
of gestation (88.3 [61.3 -114.5] and 65.4 [46.5-105] nMol of p-
nitrophenol/min/mL, p=0.0037).

4. DISCUSSION

Here,  we  evaluated  the  health  status  of  pregnant  women
through  the  analyses  of  renal,  hepatic,  and  inflammatory
profiles, glucose, hematocrit,  and hemoglobin levels. Among
the findings, although some parameters differed significantly

before  and after,  all  results  were inside the reference values.
Most  women  start  the  gestational  period  healthily,  but  some
may have a silent kidney or liver disease, subclinical, without
adverse health effects [23, 24].

Importantly,  in  our  study,  the  lipid  profile  of  pregnant
women shows marked alterations. According to Geraghty et al.
[25], lipid metabolism during pregnancy is completely altered.
By  the  final  of  gestation,  all  lipid  biomarkers,  such  as
lipoprotein particles carrying cholesterol and triglyceride, may
increase. Lipids are essential for fetal development, as they act
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Fig. (5). LDL particle size, estimation by TG/HDL-C ratio at the study participants at the first and third trimesters of gestation. n=40. D´Agostino and
Pearson linear correlation tests, Wilcoxon test. Data are shown as median and IQR (25%-75%). *** p< 0.0001.

Fig. (6). Paraoxonase-1 (PON-1) activity (nMol/p-nitrophenol/min/mL) at the study participants at the first and third trimesters of gestation. n= 40.
D´Agostino and Pearson linear correlation tests, Wilcoxon test. Data are shown as median and IQR (25%-75%). ** p=0.0037.

as a source of energy and as constituents of the cell membrane.
Cholesterol  and  phospholipids  increase  moderately,  and
triglycerides increase sharply [26]. Hypertriglyceridemia is one
of the main alterations in the lipid profile noticed at the end of
gestation. However, it is linked to VLDL content modification,
which also modifies LDL and HDL structures by fulfilling it
with higher triglyceride content [27].

In  the  present  study,  the  total  cholesterol,  lipoprotein
cholesterol  fractions,  and  triglycerides  results  were
significantly increased during the gestational trimesters, except
for HDL-C, which remained unaltered. According to Emet et
al.  [3],  LDL-C,  triglycerides,  and  HDL-C were  significantly
higher from the third trimester of gestation. Other studies have
shown that the lipid profile becomes more atherogenic at the

end of gestation [26, 28 - 30]. Vrijkotte et al. [31] found that
hypertriglyceridemia in pregnancy is associated with maternal-
fetal  complications.  It  can  compromise  endothelial  function
and contribute to the development of atherosclerotic vascular
disease, preeclampsia, and oxidative stress promotion [32, 33].

We noted that apo A-I and apo B increase from the third
trimester of gestation. In the same way, the apo B/apo A-I ratio
showed  the  same  profile  during  this  period.  The  study  by
Piechota  and  Staszewski  [34]  shows that  apo  A-I  and  apo  B
increased in the second and third trimesters, in which apo A-I
increased  by  32%  and  apo  B  by  56%.  Belo  et  al.  [35]
conducted  a  longitudinal  study  to  evaluate  apolipoprotein
concentration during the gestational period. They observed an
apo  B  increasing  from  the  first  to  the  third  trimesters  of
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gestation, while apo A-I showed a slight reduction in the third
trimester. Rymer et al. [36] concluded that in pregnant women,
apo A-I and B concentrations were higher than those of non-
pregnant women. The apo B/apo A-I ratio at the third trimester
of  gestation  reflects  the  balance  between  two  distinct
processes:  cholesterol  transport  to  extrahepatic  tissues  and
reverse transport to the liver. The increase of the apo B/apo A-I
ratio,  indicating  the  higher  proportion  of  atherogenic
lipoproteins  in  the  plasma,  is  an  index  that  reflects  the
dyslipidemia progression and endothelial dysfunction [37, 38].

Other  cardiovascular  risk  ratios  were  evaluated  in  our
study,  such  as  HDL-C/apo  A-I  and  LDL-C/apo  B,  which
reflected  lipoprotein  remodeling,  composition,  and  particle
number [37]. The significantly reduced HDL-C/apo A-I ratio
from the third trimester of gestation is suggestive of an HDL
particle  number  increase  with  lower  cholesterol  content,
suggesting an alteration in HDL particle composition and size.
The  LDL-C/apo  B  ratio  did  not  change  significantly  during
gestation, perhaps because the increase in cholesterol content
of LDL is proportional to the increase in the apo B-containing
particle number. A study by Tani et al. [39] showed that values
≤1.2  for  the  LDL-C/apo  B  ratio  are  suggestive  of  small  and
denser LDL particle predominance.

In our study, the CETP activity was different between the
first and third trimesters of gestation, showing more frequent
high  activity  at  the  end  of  gestation.  The  CETP  activity
influences  the  esterified  cholesterol  concentration  and  its
distribution  between  lipoprotein  classes,  altering  the
lipoprotein composition,  and thus influencing the lipoprotein
profile  atherogenicity  [27,  40,  41].  In  addition,  the  CETP
increased  activity  plays  a  decisive  role  in  the  formation  of
small and denser LDL [42]. Patients with dyslipidemias, such
as  hypertriglyceridemia  and  hypercholesterolemia,  with
diabetes,  obesity,  or  venous  thrombosis  have  increased
esterified cholesterol transfer from HDL to apo B-containing
lipoproteins, as a result of an increased CETP activity, which
contributes  to  a  rise  in  the  atherosclerosis  progression  and
cardiovascular risk [27, 43]. Zhang et al. [44] have shown that
endogenous  estrogen  can  affect  the  CETP  concentration  in
pregnant  women´s  plasma.  It  is  known  that  in  addition  to
hormonal status and metabolic conditions, lifestyle habits, such
as diet and physical activity, can also influence CETP activity
[45].

In the present study, a positive correlation between serum
triglyceride and CETP activity in the first and third trimesters
of  gestation  was  found.  The  CETP  activity  did  not  increase
proportionally  as  triglycerides  from  the  third  trimester,
probably  due  to  CETP enzymatic  catalytic  saturation,  which
may  have  masked  the  expected  increase  in  CETP  activity.
Another significant finding was that CETP has a higher affinity
for  esterified  cholesterol  substrate  than  triglycerides  as  a
function of the steric impediment since triglyceride molecule is
approximately 1.5 times greater than esterified cholesterol [46]

In our study, the PLTP activity did not change significantly
during  pregnancy.  PLTP  contributes  to  HDL  metabolism
because  it  is  associated  with  lipoprotein  remodeling  and
reverse  cholesterol  transport  [47].  The  increase  in  PLTP
activity  leads  to  increased  cholesterol  efflux  from  the

endothelial cell membranes to HDL, permitting the formation
of larger and anti-inflammatory HDL particles [47]. According
to Jiang et al. [48], the adipose tissue produces modulators that
can  interfere  with  the  performance  of  PLTP  activity.
Furthermore, it is noteworthy that apo E plays an essential role
in  PLTP  regulation,  as  an  activator  or  just  increasing  its
activity  [49].

When evaluating the lipoprotein remodeling, there was no
significant difference in HDL particle size compared to the first
and third trimesters of gestation. Several HDL subpopulations
show  different  qualitative  properties  that  directly  affect  its
activity  [50].  HDL  particles  are  quite  heterogeneous
structurally  and  functionally  [51,  52].  Among  the  HDL
subpopulations, the larger lipoprotein particles (the cholesterol-
riches)  are  inversely  related  to  cardiovascular  risk,  and  the
smaller  particles (probably inefficient  to remove cholesterol)
show a cardiovascular-risk positive correlation [53 - 55].

LDL particles  are  also  heterogeneous  and  have  different
physical and chemical characteristics [2]. In the present study,
the LDL particle size was estimated by the TG/HDL-C ratio.
From  the  third  trimester  of  gestation,  the  values  suggest  a
predominance of smaller, denser, more atherogenic particles. A
study conducted by Jayanta et al. [56] showed that in the group
of uncomplicated and non-hypertensive pregnant women, the
TG/HDL-C  ratio  value  from  the  third  trimester  of  gestation
was 3.6 higher than that found in our study. Meyer et al.  [7]
showed  that  in  pregnant  women,  from  the  second  and  third
trimesters,  the  proportion  of  small  and  dense  LDL  particles
increased  when  compared  to  women  in  the  first  trimester  of
gestation  and  the  postpartum  period.  This  proportion  was
higher  in  obese  pregnant  women  (40.7%)  than  those  with
normal weight (21.9%). Zeljkovic et al. [57], in a longitudinal
study,  concluded  that  LDL  particle  size  reduced,  but  the
proportion of small and dense LDL increased during gestation.
The  increase  in  the  proportion  of  small  and  dense  LDL
particles is indicative of an atherogenic phenotype, which has
been associated with the development of hepatic steatosis and
has also been observed in women with gestational diabetes and
preeclampsia [32, 58, 59].

Regarding  the  oxidative  profile  during  pregnancy,  the
present study showed a decrease in PON-1 activity in the third
trimester. A significant PON-1 activity decrease was observed
in previously performed studies [60 - 62]. Stefanovic et al. [61]
showed,  in  a  longitudinal  study,  that  a  significant  PON-1
activity decreased in the third trimester (32 weeks) of gestation.
In addition, the lipid profile became more atherogenic. Similar
results were found in the study conducted by Ferre et al. [60],
where  the  PON-1  activity  decreased  in  different  moments
(145.8 U/L at 8-20 weeks; 111.1 U/L at 32 weeks, and 100.4
U/L during labor). Ferretti et al. [63] evaluated the relationship
between obesity and oxidative stress in pregnancy. Their data
showed a decrease in PON-1 plasma activity in obese pregnant
women, indicating that mothers and newborns are susceptible
to  greater  tissue  oxidative  damage.  Changes  in  lipid  profile,
body mass index, hormonal profile, and oxidative stress lead to
PON-1 activity changes, mainly at the end of gestation. This
process represents a decrease in antioxidant capacity and may
be  an  additional  reason  for  a  cardiovascular  risk  increase  in
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pregnant  women  [61].  Also,  our  findings  from  a  previously
published  systematic  review,  an  animal  model  [64],  showed
that an offspring of parents, mother, and father, exposed to a
high-fat  diet  exhibited  a  variety  of  up  and  down  gene
expressions,  influencing  changes  in  the  status  of  glycemia,
insulinemia,  pancreatic  islet  tissues  transcriptome,  levels  of
triglycerides, and lipogenic genes expression.

CONCLUSION

The  development  of  dyslipidemia,  mainly
hypertriglyceridemia, during the gestational period associated
with  lipoproteins'  structural  and  functional  changes,  such  as
CETP activity,  increased apo B/apo A-I  ratio,  and decreased
HDL  antioxidant  capacity,  argues  for  the  presence  of  an
atherogenic lipid profile, with less LDL protection. Although
the  HDL  particle  remodeling  does  not  change,  the
predomination of small and denser LDL particles at the end of
gestation  points  to  important  lipoproteins'  structure  and
function  changes.  The  observed  lipoprotein  modifications  in
women  with  uncomplicated  pregnancy  alert  for  close
monitoring  of  metabolic  predisposing  conditions  that  can
aggravate  cardiovascular  risk.
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