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Abstract:

Aims:

Our goal is to find predictive genomic biomarkers in order to identify subgroups of early-stage lung cancer patients that are most likely to benefit
from adjuvant chemotherapy with surgery (ACT).

Background:

Receiving ACT appears to have a better prognosis for more severe early-stage non-small cell lung cancer patients than surgical resection only.
However, not all patients benefit from chemotherapy.

Objective:

Preliminary studies suggest that the application of ACT is associated with a better prognosis for more severe NSCLC patients compared to those
who only underwent surgical resection. Given the immense personal and financial costs associated with ACT, finding the patients who are most
likely to benefit from ACT is paramount. Thus, the purpose of this research is to utilize gene expression and clinical data from lung cancer patients
to find treatment-associated genomic biomarkers.

Methods:

To investigate the treatment effect, a modified-covariate regularized Cox regression model with lasso penalty is implemented using National
Cancer Institute gene expression data to find genomic biomarkers.

Results:

This research utilized an independent validation dataset involving 318 lung cancer patients to validate the models. In the validation set with 318
patients, the modified covariate Cox model with lasso penalty were able to show patients who followed their predicted recommendation (either
ACT  for  low-risk  group  or  OBS  for  the  high-risk  group,  n  =  171)  have  higher  survival  benefits  than  147  patients  who  did  not  follow  the
recommendations (p < .0001).

Conclusion:

Based on validation data, patients who follow our predicted recommendation by genomic biomarkers selected from the proposed model will likely
benefit from ACT.
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1. INTRODUCTION

The task of identifying subgroups that are more likely to
benefit from a particular treatment falls into the realm of causal
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inference  and  precision  medicine.  There  is  an  increase  in
medical  interest  focusing  on  providing  personalized  care  for
patients.  This  requires  investigating  how  unique  patient
characteristics,  which  may include  both  clinical  and  genetic,
impact  treatment  efficacy.  A  better  understanding  of  the
interaction  between  treatment  and  patient-specific  predictive
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factors  will  enable  medical  practitioners  to  build  upon  the
availability  of  individually  tailored  and  optimal  therapies.
Ultimately,  the  goal  is  to  build  individual-specific  decision
support  tools  that  enable  a  data-driven  understanding  of  the
treatment options and improve patient outcomes.

Non-Small  Cell  Lung  Cancer  (NSCLC)  is  the  leading
cause of cancer-related deaths worldwide. For early-stage lung
cancer  patients,  surgical  resection  only  is  the  most  common
treatment.  For  more  severe  patients,  several  randomized
control  studies  involving  patients  with  resected  stages  IB  to
IIIA,  NSCLC  have  indicated  cisplatin-based  adjuvant
chemotherapy (ACT) significantly benefitting 5-year survival
rates, with improvements ranging from 4% to 15% [1]. Despite
the  limited  improvement  in  survival,  ACT  remains  a
demanding  procedure,  and  the  toxicity  associated  with  the
treatment  facilitates  careful  consideration  on  an  individual
level whether the potential benefits outweigh the risk and cost.
Toxic side effects occurred from chemotherapy treatment in a
large  portion  of  ACT-treated  patients  in  a  study  [2,  3].  This
included neutropenia (88%), fatigue (81% of patients), nausea
(80%),  and  anorexia  (55%).  Neutropenia  was  the  most
common  severe  side  effect  of  the  ACT  treatment;  73%  of
patients had grade 3 or grade 4 neutropenia. These typical side
effects of chemotherapy again emphasize the need for careful
consideration to ensure patients who will actually benefit from
chemotherapy and should receive ACT.

Recent  technological  advances  in  the  realm  of  genetics
allow  for  high  throughput  gene  expression  profiling  at  the
molecular level in a relatively cost-efficient manner. Thus, the
increasing availability of microarray data has given rise to the
field  of  bioinformatics  and  countless  opportunities  to  mine
through such data with applications, especially in the fields of
disease classification and drug discovery. At present, the use of
prognostic gene expression data in formal clinical practice is
still an ongoing process.

The goal of this analysis is to use gene expression profiling
to identify genomic biomarkers for stage-independent groups
of NSCLC patients, who are more likely to benefit more from
ACT than surgical resection only. This could help lead to more
accurate  and  optimal  treatment  decisions,  thereby  improving
the efficacy of ACT and avoiding unnecessary toxicities and
costs.

Many previous studies have sought to identify prognostic
gene  signatures  in  NSCLC  patients.  A  previous  gene
expression  study  by  Raponi  et  al.  was  able  to  discover
prognostic  gene  signatures  that  were  correlated  to  NSCLC
patient  survival  [4].  In  particular,  Zhu  et  al.  identified  a  15-
gene  prognostic  signature  using  data  from  patients  who
underwent  surgical  resection  only  (OBS patients)  to  classify
patients into a low-risk and high-risk category with respect to
overall  survival  [3].  We  note  that  their  predictive  results
utilized  the  same OBS patients  that  they  trained  their  model
with, thus possibly introducing bias into their results. We used
a separate validation set to minimize over-fitting and provide
an unbiased evaluation of our model.

Decision tree-based ensemble methods have been popular
within literature due to their relatively simple and interpretable

nature.  Foster  et  al.  suggested  utilizing  a  two-stage  “virtual
twins”  model  for  subgroup  identification  for  randomized
controlled  trials  [5].  The  model  first  utilizes  random  forest
models to estimate the treatment effect for each patient. Then,
it  applies  the  Classification  and  Regression  Tree  (CART)
algorithm [6]  to determine a small  number of  predictors  that
were  associated  with  the  treatment  effect.  This  model  was
shown to perform well on clinical trial data and simulated data,
verified through different validation methods. Recently, Moon
et  al.  developed  their  methods  similar  to  a  two-stage  virtual
twin’s model for subgroup analysis of NSCLC patients [7].

Previous work by Moon et al. also tackled the problem of
predicting the treatment recommendation for NSCLC patients
[7,  8].  Their  methods  implemented  two  prediction  models
based  on  two  treatment  groups  (ACT  and  OBS)  using  the
training data. They employed feature selection with the lasso
penalty and later with the net elastic penalty. Then, they both
utilized Accelerated Failure Time (AFT) models separately on
each  group  to  estimate  whether  the  patients  would  survive
longer  under  ACT  treatment.  They  specifically  used  a  two-
stage random forest  method for the classification but did not
validate  their  results  on  an  independent  test  set.  A  potential
drawback from their approach might be that they implemented
two models by splitting the patients into two groups with one
that  received  chemotherapy  treatment  and  one  without  and
trained two separate sets of patients. By decreasing the training
sizes for the two patient groups, it might introduce the risk of
overfitting  the  models  and  increase  the  chance  of  selecting
false-positive  features.  Another  potential  drawback  might  be
the  implementation  of  the  two-stage  random forests  method.
Their  overall  model  could  only  predict  if  a  patient  should
undergo  chemotherapy  when  both  random  forest  models
classified the patient with the same prediction. Thus, patients
with  differing  predictions  from the  two random forests  were
inconclusive for an overall prediction.

The  previously  mentioned  studies  motivate  further
exploration  into  utilizing  gene  expression  data  in  a  clinical
setting.  In  this  paper,  we  propose  a  modified  covariate
approach that combines the problem into a single framework.
The proposed models introduce explicit treatment interaction
factors  for  identifying  genes  that  are  closely  related  to  the
treatment  effect.  Unlike  the  studies  mentioned  previously,  a
separate validation set is used to evaluate model performance.

2. DATA DESCRIPTION

The  JBR.10  data  set  utilized  by  Zhu  et  al.  [3]  comes
originally from a large-scale randomized study by Winton et al.
[2], comparing the survival of early-stage NSCLC patients that
underwent  adjuvant  vinorelbine/cisplatin  versus  observation
alone. The goal of the study was to determine whether patients
with  completely  resected  non-small-cell  lung  cancer  receive
survival  benefit  from  adjuvant  vinorelbine  plus  cisplatin
treatment. In the original study that began in July 1994, a total
of 482 patients randomly received a treatment of either surgery
alone with no chemotherapy (n = 242) or  a  regimen of ACT
treatment following surgery (n = 240).

As  Zhu  et  al.  utilized  the  data,  133  randomly  selected
frozen JBR.10 tumor samples were used as a training dataset in
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this  paper [3].  Among the 133 patients  with gene expression
profiles  using  the  Affymetrix  U133A  oligonucleotide
microarrays  [9],  71  patients  received  chemotherapy,  and  62
received surgery only. The median age was 62 years old, and
68% of the patients were men. 55% of the patients were stage
IB,  and  45%  were  stage  II.  53%  of  the  patients  had
adenocarcinomas, 39% had squamous cell carcinomas, and 8%
had another type of cancer. In the training set, patients in the
chemotherapy  group  exhibited  slightly  higher  survival  than
those in the observation group after around 2 years (Fig. 1). For
the training set, the 5-year survival rate for the chemotherapy
group  was  73.7%,  while  it  was  57.9%  for  the  observation
group. The hazard ratio between ACT and OBS was 0.74 (p =
.3), meaning that ACT treatment has a 26% lower risk of death
than  OBS  treatment  alone.  This  JBR.10  dataset  was
downloaded from the NCBI website with the accession number
GSE14814  and  was  used  as  the  training  set
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148
14).

For  the  validation  set,  data  was  used  from the  Director's
Challenge Consortium for the Molecular Classification of Lung
Adenocarcinoma  (DCC)—  a  large  retrospective  microarray
study  of  lung  adenocarcinoma  survival  rates  using  a  gene
expression data from Shedden et al. [10]. Lung samples from a
total of 442 patients with adenocarcinoma were collected from
across  four  institutions.  Since  43  of  the  DCC  samples  were

found  in  the  JBR.10  dataset,  they  were  excluded  to  ensure
independence between the training and validation data in this
paper. To ensure further concordance between both the training
and  validation  sets,  patients  with  Stage  III  lung  cancer  were
removed from the DCC samples since the JBR.10 samples only
consisted  of  Stage  I  and  Stage  II  patients.  After  removing
samples with missing values on treatment and time to follow
up/death covariates, 318 samples remained as a validation set.
This  validation  set  was  downloaded  from  the  NCBI  website
with the accession number GSE68465 (https://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GSE68465).

Demographics  for  the  patients  used  in  both  training  and
validation  sets  are  summarized  side-by-side  in  Table  1.
Overall,  for  patients  in  the  validation  set,  the  OBS  patients
exhibited  higher  survival  than  the  chemotherapy  patients,
possibly due to the toxicity of ACT (p = 0.005), (Fig. 1). When
split  by  stage,  Stage  I  patients  in  the  validation  set  showed
much  higher  survival  if  they  underwent  surgery  only  (p  <
0.001), (Fig. 2). It may be due to the high proportion of stage I
patients. On the other hand, Stage II patients in the validation
set showed only marginally higher survival if they underwent
chemotherapy (p = 0.26), (Fig. 3). Thus, in this paper, we focus
on individualized treatment by building a modified covariate
Cox regression model with lasso penalty to identify genomic
biomarkers in order to maximize patient survival.

Fig. (1). Survival probability of patients by treatment in training data (left) and validation data (right).

Fig. (2). Survival probability for Stage I patients by treatment in training data (left) and validation data (right).
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Fig. (3). Survival probabilities of Stage II patients by treatment in training data (left) and validation data (right).

Table  1.  Side-by-side  comparison  of  JBR.10  training  set
and DCC validation set.

- JBR.10 Patients
(n=133)

DCC Validation
Patients (n=318)

Treatment Received   
Adjuvant Chemotherapy (ACT) 71 42

Observation (OBS) 62 276
Age   

Less than 65 87 142
Older than or equal to 65 46 176

Stage of Disease   
I 73 241
II 60 77

Pathological Cancer Type   
Adenocarcinoma 71 318

Squamous 52 0
Other 10 0

3. METHODS

3.1. Data Preprocessing

The  Affymetrix  microarray  is  a  device  designed  to
simultaneously measure the expression levels of thousands of
genes  in  a  particular  tissue  or  cell  type  of  interest.  The
microarrays  are  microscopic  slides  that  are  printed  with
thousands  of  tiny  spots  in  defined  positions,  with  each  spot
containing known DNA sequences that correspond to particular
genes. The DNA molecules attached to each slide act as probes
to detect gene expression from incoming samples, which is also
known  as  the  transcriptome  or  the  set  of  messenger  RNA
(mRNA)  transcripts  expressed  by  a  group  of  genes.
Specifically,  for  the  U133A  GeneChip  used  in  the  analysis,
there  are  over  14,500  detectable  genes.  For  each  of  the
detectable genes in the array, there is a corresponding probe set
containing  11  distinct  25-base  pairs.  The  11  distinct  pairs
include  a  perfect  match  (PM)  probe  and  a  complementary
mismatch (MM) probe. The PM probe is designed to match a
particular sequence of interest perfectly, while the MM probe is
designed to measure the level of mis-hybridization. Together,
they  help  provide  a  more  accurate  measurement  of  gene
expression.

Before any initial analysis may begin, the raw microarray
data must first be preprocessed as a set of intensities by usually
following  three  steps,  background  correction,  normalization,
and  summarization.  Preprocessing  procedures  combine
multiple probe signals into a single value. There are inherent
physical differences between each microarray chip as well as
differences  in  the  handling  of  the  chip  and  internal  dye
intensity  effects  that  introduce  extraneous  noise  to  the  data.
Thus,  a  problem  arises  when  true  biological  variation  in  the
microarray  chips  becomes  entangled  with  an  unwanted
systematic variation. Background correcting procedures adjust
the  values  for  the  ambient  background  intensities  in  each
probe. Since the probes are usually randomly scattered within
the  microarray,  there  should  not  be  any  particular  spatial
pattern in the intensities. It removes local artifacts and noise so
that  the  measurements  are  not  so  affected  by  neighboring
measurements. For robust multichip average (RMA) method,
background correction involves modeling the observed Perfect
Match (PM) signal of each probe as a sum of an exponentially
distributed true signal (S) term and a normally distributed noise
term (e):

where  the  index  i  represents  the  particular  sample  or
microarray, index j represents the probe pair (within each probe
set corresponding to a particular gene), and index k represents
the  particular  gene  within  the  microarray.  From  this,  the
expected value of the true signal intensity given the observed
PM  signal,  E(Sijk|PMijk),  is  estimated  as  the  background-
corrected  intensity.

Normalization  is  required  to  correct  and  compensate  for
the unwanted variation and scale the distribution of the gene
expression  so  that  actual  biological  differences  in  the  gene
expression  may  be  more  appropriately  detected.  Quantile
normalization  is  a  standardizing  technique  to  make  similar
distributions. As an example, consider three microarrays with 4
probes. Array 1 has values {3, 5, 6, 7} for 4 probes, array 2 has
{9, 9, 3, 6} and array 3 has {6, 3, 7, 4}. The first step is to rank
the values within each array. Array 1, 2, and 3 have ranks {1,
2,  3,  4},  {3.5,  3.5,  1,  2},  and  {3,  1,  4,  2},  respectively.  The
second step is  to  obtain averages of  each rank across  arrays.
Rank 1 average is (3+3+3)⁄ 3=3; rank 2 average is (5+6+4) ⁄ 3

𝑃𝑀𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘, 
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=5; rank 3 average is (6+9+6) 3 = 7; rank 4 average is (7+9+7)
⁄3=7.67. The last step is to replace the average rank values with
the rank position in each array. Thus, normalized array 1 has
values  {3,  5,  7,  7.67}.  For  normalized  array  2,  we  use  the
average value of rank 3 average and rank 4 average due to a tie.
Thus,  normalized  array  2  has  {7.335,  7.335,  3,  5}  values.
Normalized array 3 has {7, 3, 7.67, 5} values.

Finally, the summarization step combines probe intensities
across the probe set into a single value that may be considered
the  gene  expression  level.  The  summarization  step  involves
using  background-corrected  and  normalized  intensities  and
their logged values. These log-transformed intensities denoted
as Yijk, is then modeled as the following linear additive model:

where  µik  represents  the  log  scale  expression  level  for
microarray  i  for  gene  k,  á  jk  is  the  probe  affinity  effect  for
probe pair j and gene k, and ϵijk is the independent identically
distributed  error  term.  Given  the  noisy  nature  of  gene
expression data, the median polish method developed by Tukey
[11]  is  utilized  to  estimate  the  parameters  on  the  right-hand
side in the additive model. The median polish method involves
iteratively extracting row and column medians to estimate the
row and column effects that correspond to the microarray and
probe pair effects, respectively. The estimate of µik gives the
final RMA expression measure for microarray i and gene k.

By continuing with the previous example, the final RMA
expression  measures  for  the  probe  set  via  the  median  polish
method is calculated as follows: for the normalized array 1, {3,
5,  7,  7.67},  the  median  is  6  across  the  probe  set.  For  the
normalized array 2, {7.335, 7.335, 3, 5}, the median is 6.1675.
For  the  normalized array  3,  {7,  3,  7.67,  5},  the  median is  6.
After removing the row medians obtained across the probe set,
the array 1 has values {-3, -1, 1, 1.67}, the array 2 has {1.1675,
1.1675, -3.1675, -1.1675} and the array 3 has {1, -3, 1.67, -1}.
Now we obtain column medians across arrays per each probe.
Medians  for  probes  1,  2,  3,  and  4  are  1,  -1,  1,  and  -1,
respectively. After removing the column medians, the residual
values for arrays 1, 2 and 3 are {-4, 0, 0, 2.67}, {.1675, 2.1675,
-4.1675,  -.1675},  and  {0,  -2,  .67,  0}.  The  median  polish
algorithm stops because all row medians and column medians
are zero. To obtain the RMA expression measure for each of
the  three  arrays,  the  residual  values  are  subtracted  from  the
original values. Thus, the resulting expression values for arrays
1, 2, and 3 are {7, 5, 7, 5}, {7.1675, 5.1675, 7.1675, 5.1675},
and {7, 5, 7, 5}. By taking the mean across each probe set, the
RMA expression measures for the three arrays are found to be
6, 6.1675, and 6.

The raw CEL files from both datasets were preprocessed
and  normalized  altogether  via  the  RMA  algorithm  to  ensure
consistency between the datasets using the “Affy” package in
R  [12].  The  dataset  contains  over  23,000  probe  sets  which
warranted  an  initial  variable  screening.  Nonspecific  gene
filtering  is  a  popular  technique  to  help  alleviate  the  high
dimensional nature of genetic data by keeping only the probe
sets  that  show  high  variability  and  remove  low  variability
probe  sets  that  are  likely  non-informative.  This  should  help
with  potential  overfitting  with  the  removal  of  false  positives

and  redundant  covariates  for  more  efficient  analysis.
Affymetrix microarrays contain control probe sets (denoted by
the  “AFFX” prefix)  that  do  not  correspond  to  any  particular
genes and are used to help normalize gene intensities.  These
control  probe  sets  are  thus  removed  before  performing  gene
filtering.  Nonspecific  gene  filtering  is  then  applied  in  the
analysis, keeping only the 10,000 probe set features with the
highest variance in the training dataset. Thus, the features used
to  train  the  model  are  the  remaining  10,000  probe  sets  in
addition to the demographic and clinical covariates of age, sex,
and stage.

3.2. Statistical Methods

Survival  analysis  models  the  expected  duration  of  time
until  an  event  occurs,  whether  it  is  the  death  of  a  biological
entity,  recurrence  of  a  disease,  or  failure  of  a  mechanical
system. Survival modeling involves examining the relationship
between  survival  time  data,  which  is  commonly  subject  to
censoring, and one or more covariates.

The Cox proportional hazards model is a popular choice to
model  covariates  in  relation  to  a  survival  time  due  to  its
relative  simplicity  and  convenience  in  handling  censored
observations [13]. Given the survival data (ti, δi, Z i), i = 1, …
n, where ti is the observed survival or censored time, δi is the
censoring indicator for the survival time, and Zi = (Zi1, Z i2, …,
Zip)T is a p -dimensional covariate vector for the ith individual,
the Cox model is

where λ(t|Z) is the hazard rate at time t given the covariates
Z,  λ(t)  is  the  baseline  hazard  rate,  and  β  is  a  p-dimensional
parameter vector associated with each of covariates. Cox [13]
proposed  the  partial  likelihood  to  estimate  the  parameters  β
through the following formula:

The estimated parameters for the cox model are given by
minimizing the partial likelihood, which is given as:

where R(ti) = {j: tj ≥ ti} denotes the risk set at time ti. Only
uncensored  event  times  contribute  their  own  factor  to  the
partial  likelihood.  However,  both  censored  and  uncensored
observations  appear  in  the  denominator,  where  the  sum over
the  risk  set  includes  all  individuals  who  are  still  at  risk
immediately  prior  to  ti.  The  proportional  hazards  condition
states that covariates are multiplicatively related to the hazard;
the model itself  does not directly estimate survival times but
rather estimates how the covariates affect the hazard rates. The
logarithm of the partial likelihood is minimized due to the ease
of calculation. This is given as:

𝑌𝑖𝑗𝑘 = 𝜇𝑖𝑘 + 𝛼𝑗𝑘 + 𝜖𝑖𝑗𝑘, 
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The  survival  of  two  individuals  can  be  compared  with
hazard ratios; given two individuals with covariates Z1 and Z2,
the hazard ratio between the two individuals is given by

Because the number of covariates greatly outnumbers the
number of observations in high dimensional microarray data,
overfitting  and  high  variance  may  be  significant  problems.
Thus, additional consideration must be taken to select the most
relevant  covariates.  Tibshirani  proposed  extending  the  lasso
penalty in the least-squares regression models into the context
of  Cox models  by minimizing the partial  likelihood with the
lasso [14]. The lasso estimates for the Cox model are

where  γ  is  a  specified  penalty  parameter  and  p  is  the
number of covariates. The nature of the lasso constraint causes
it  to  shrink  irrelevant  coefficients  and  produces  coefficients
that are exactly zero. As a result, it simultaneously reduces the
estimation variance while providing a final interpretable model
with  a  feasible  set  of  variables.  If  too  large  of  a  penalty
parameter  λ  is  chosen,  the  estimated  parameters   maybe
significantly  biased;  if  too  small,  the  model  may  not  be
sufficiently sparse. In some circumstances, one may not want
to eliminate certain covariates with the lasso penalty from the
model during training if the covariates hold some underlying
importance  or  special  weight  in  regard  to  the  response.  This
may be done by modifying the minimization problem above:

By adding an individual penalty term vj for each coefficient
j,  chosen  coefficients  may  be  left  out  of  the  regularization
process even if the penalty term vj is zero. Thus, this prevents
the  specified  covariates  from  being  removed  by  the  lasso
penalty  in  the  final  model.

We employ the modified covariate method by Tian et al.
[15]. A set of q covariates (both clinical and genetic data) Z,
and a binary treatment variable T, which takes on values of -1
or +1 corresponding to observation or treatment, respectively,
are  given.  Let  function  W  be  p  dimensional  functions  of
covariate Z including an intercept. To identify the subgroup of
patients  who may or  may not  benefit  from the treatment,  we
consider  a  treatment  interaction  term.  Thus,  the  modified
covariate  method  begins  with

where  W*i  =  W(Z)∙  T2.  For  simplicity  in  this  analysis,
W(Zi)  is  chosen  as  the  identity  function,  W(Zi)  =  Zi.  For
survival data, the following Cox regression model can be used:

Under  the  modified  covariate  approach,  the  linear
combination γTZ can be thought  of  as  a  treatment  score and
thus  used  to  stratify  patients  according  to  how  they  would
respond to a treatment. For example, if given T = + 1 as ACT
treatment, higher treatment scores γ T Z correspond to a higher
hazard, and thus ACT treatment is not recommended. On the
other hand, lower treatment scores correspond to a relatively
lower  hazard,  and  thus  ACT  may  be  recommended.  In  the
randomized trials, we assume P(T=1) = P (T= - 1) =  meaning
that the treatments are randomly assigned to each patient.

The  features  are  transformed  to  the  modified  covariate
approach,  where  each  feature  is  multiplied  by  the
corresponding treatment (either T/2 = + 0.5 or T/2 = - 0.5). The
modified  covariate  Cox  model  is  then  trained  using  the
preprocessed JBR.10 training set. We note that the coefficients
associated with the modified covariate measure the interaction
strength between treatment and subgroup of patients who may
or may not  benefit  from the treatment.  To further reduce the
dimensionality and alleviate high potential variance, the model
is  trained  using  the  lasso  regularization  penalties  to  select
prominent  predictive  genomic  markers.  Given  the  potential
importance  of  the  clinical  covariates,  the  model  trained with
the lasso is modified to keep the three clinical covariates in the
model. We implement this approach using the glmnet package
in  R,  which  uses  the  coordinate  descent  algorithm  to
approximate  the  penalized  coefficient  estimates.  Then,  the
results from both regularization methods are compared. Due to
the nature of the relatively small training set, a Leave-One-Out
Cross-Validation (LOOCV) scheme was used to tune the lasso
penalty parameter. The LOOCV is a popular variant of k-fold
cross-validation  involving  the  splitting  of  samples  randomly
into k groups or folds. The standard approach for the LOOCV
is made by setting aside one observation as the testing sample
and fitting the model on the remaining n - 1 observations in the
training  sample.  Then,  the  model  evaluation  is  made  on  the
left-out testing sample. This process is repeated for each of the
observation, where each fold is served as the testing set once.
Ultimately, the hyperparameters that maximize the average of
the cross-validation metrics are chosen. This helps determine
the  optimal  model  hyperparameters  so  that  the  model  is  not
overfitted on the training data.

In the Cox regression framework where there is censoring,
maximizing the partial likelihood may lead to a problem when
the testing sample used for cross-validation is too small. If the
number  of  testing  samples  is  too  small,  there  may  not  be
enough samples to build up an appropriate risk set R(ti) present
in  the  partial  likelihood.  This  could  potentially  lead  to
undefined  or  unstable  partial  likelihoods.  Verweij  and  Van
Houwelingen [16] proposed a method to calculate a shrinkage
factor by measuring CV score, mentioned as below:

where  refers to the partial likelihood calculated on the
entire  dataset,   refers  to  the  partial  likelihood  on  the
dataset  which  excludes  the  i-th  observation  (out  of  n
observations),  and  -i  (λ)  refers  to  the  estimated  parameters
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fitted  using  the  training  set,  which  excludes  the  left-out
observation and the using candidate λ parameter. This avoids
calculating the partial  log likelihood directly  on the held-out
testing  set  and  ensures  a  sufficient  number  of  samples  to  be
defined for the partial likelihood.

After training, the estimated parameters  maybe used to
find the risk scores (risk with respect to ACT treatment) for the
training set given by 'Z. A threshold must then be determined
to  stratify  the  patients  into  a  low-risk  and  high-risk  group.
Patients  who  have  a  risk  score  higher  than  the  threshold  are
classified as high-risk patients and thus are not recommended
chemotherapy treatment; conversely, patients whose risk scores
are lower than the threshold are classified as low-risk patients
and thus are recommended chemotherapy treatment.

One  possible  and  natural  choice  is  to  set  the  decision
threshold at  zero.  By using the modified covariate  approach,
the hazard ratio of the two treatments on an individual is given
by:

If  the  patient  risk  score  β'Zi>  0,  then  the  hazard  rate  is
greater if the patient undergoes T = + 1 (which corresponds to
ACT treatment) than if the patient does not. Conversely, if the
risk score β' Zi< 0, then the hazard rate for the patient is lower
had they undergone ACT treatment compared to without ACT
treatment.  Setting  the  threshold  to  zero  is  a  sensible  choice
under  the  assumption  that  the  modified  covariate  method  is
indeed the actual model of interaction between treatment and
the other covariates. Even though setting the decision threshold
at zero may only capture the relative direction and not the size
of  the  effect,  we  considered  both  zero  risk  score  and  the
median  of  the  risk  scores  as  thresholds  in  order  to  make
predicted  treatment  recommendations  by  classifying  patients
into  a  high  or  low-risk  group.  To  evaluate  the  classifier,
survival  curves  are  used  based  on  treatment  types  and
classified risk groups. For example, for the patients classified
in the high-risk group,  those who underwent  ACT should be
expected to survive just as short or shorter than those who did
not. Conversely, in the low-risk group, patients that underwent
ACT are  expected  to  survive  longer  or  just  as  long  as  those
who did not.

Additionally,  patients  may  further  be  separated  into  the
following  two  groups:  one  where  the  actual  treatment  they
underwent  corresponded  to  the  treatment  recommended
according to their predicted risk group and the other where the
two  do  not  correspond.  For  a  particular  patient  i,  if  TXi

represents the actual treatment that patient i received and Ri is
the recommended treatment based on the previous risk scores,
then the variable Fi  indicating whether the patient i  followed
the recommended treatment is given by

A  successful  classifier,  in  principle,  should  split  the
patients  such  that  those  who  follow  the  recommendation
exhibit  higher  survival  than  those  who  do  not.  Finally,  the

modified covariate model trained using the JBR.10 dataset is
validated using the DCC dataset.

4. RESULTS AND DISCUSSION

After  tuning  the  lasso  penalty  λ  with  LOOCV,  the
modified  covariate  Cox model  is  built  with  the  chosen  lasso
penalty on the entire training set. The covariates of age, stage,
and gender are explicitly left unregularized and are present in
the final model. Table 2 shows the selected genomic markers
by  the  lasso  penalty.  Those  probe  sets  significantly  interact
with the treatment.

All  genes  selected  from  the  lasso  show  a  potential
relationship  with  NSCLC  and/or  ACT  from  literature.
AKR1C3  has  previously  been  found  to  be  overexpressed
specifically  in  NSCLC  and  can  be  used  to  determine  NRF2
(Nuclear  factor  erythroid  2-related  factor  2)  status  [17].
Determining  NRF2  status  is  vital  because  activation  of  the
NRF2 pathway has been previously discovered to be correlated
with benefit from adjuvant chemotherapy for NSCLC patients
[18]. The inhibition of genes in the G-antigen family of lung
cancer  patients  has  been  found  to  result  in  a  more  sensitive
reaction to drugs used in adjuvant chemotherapy like cisplatin
and  etoposide  [19].  Recent  studies  suggest  that  the
overexpression of the PROM1 gene is associated with a poorer
prognosis  of  NSCLC [20].  In  addition,  it  has  been  proposed
that the CLIC3 gene is a prognostic biomarker for lung cancer
[21]. DHRS2 has also been previously found to be correlated
with  metabolism  proteome  clusters  and  overall  survival  in
NSCLC  patients  [22].

Table 2. Genomic markers selected by the regularized Cox
regression with lasso penalty.

Probe
Set/Covariate Gene Symbol Gene Name

209160_at AKR1C3 aldo-keto reductase family 1
member C3

207739_s_at

GAGE2D,
GAGE2E,
GAGE2A,
GAGE13,
GAGE2B,
GAGE2C,

GAGE12D,
GAGE4,

GAGE12J,
GAGE10,

GAGE1, GAGE8.

G – antigen family

204304_s_at PROM1 prominin-1

214079_at DHRS2 Dehydrogenase/reductase SDR
family member 2

219529_at CLIC3 Chloride intracellular channel
protein 3

We implemented the modified covariates model using the
lasso penalty  with  the  JBR.10 dataset  as  the  training set  and
stratified  the  patients  along  the  median  of  the  estimated  risk
scores  from  the  model;  67  of  the  training  set  patients  were
classified as the low-risk group,  and the remaining 66 as the
high-risk group. For the low-risk patients, ACT treatment was
recommended, while for the high-risk patients, ACT was not
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𝜆(𝑡 | 𝑍, 𝑇 = −1)
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Fig. (4). Survival benefit between a group of patients who followed the predicted treatment by the modified covariate Cox model with lasso penalty
(True) versus a group of patients who did not follow the predicted treatment (False) in the training (JBR.10) data (left) and validation data (right).

recommended. The survival analysis was conducted between a
group  of  patients  who  actually  followed  the  predicted
recommendation and a group of patients who did not follow the
predicted  recommendation.  There  were  75  patients  who
actually underwent the predicted treatment, and the remaining
58 patients had discordance between their actual treatment and
their  predicted  treatment.  The  log-rank  test  showed
significantly higher survival for the patients who followed the
predicted  treatment  than  patients  who  did  not  follow  it
(p<0.001;) (Fig. 4), thus indicating that the model performed
well on the data that it was trained on.

Similarly, 159 patients in the validation set were classified
into the high-risk group and the remaining 159 into the low-
risk  group  by  the  modified  covariate  model  with  the  lasso
penalty using the median risk score. Among them, 161 patients
actually  followed  their  predicted  treatment  recommended  by
the model, and the remaining 157 patients did not. The model
exhibited  a  significant  survival  difference  between  the  two
groups (p<0.0001), (Fig. 4). This showed stronger evidence in
the efficacy of the treatment recommended by the model and
the ability of the estimated risk scores to stratify patients into
subgroups  that  are  likely  and  not  likely  to  benefit  from
chemotherapy.

We also implemented the lasso penalty model with a zero
cut-off  threshold  to  classify  the  patients  in  the  validation set
into high-risk and low-risk subgroups for predicting treatment
recommendations.  The  model  classified  189  patients  as  low
risk  and  129  as  high  risk.  The  151  patients  who  followed
predicted  treatment  recommendations  from  the  model  also
showed very similar survival patterns to (Fig. 4) and showed
significantly  higher  survival  than  167  patients  who  did  not
(p<0.0001).

CONCLUSION

The  aim  of  this  paper  is  to  provide  an  individualized
treatment recommendation to early-stage lung cancer patients
by  finding  a  potential  treatment-related  set  of  genomic
biomarkers  using  the  lasso  Cox  regression  model  with
modified covariates approaches on the survival of lung cancer

patients. The JBR.10 data set, consisting of randomly selected
133 frozen tumor samples, was used as the training set. These
133 patients were comprised of 71 who received chemotherapy
and 62 who received surgery only, with 55% of them in stage
IB and 45% in stage II. For the validation set, the DCC dataset
of  lung  samples  from  442  patients  was  used.  Among  442
samples, 43 samples were removed because they were part of
the training set, and other samples were removed to maintain
consistency of the only Stage I and Stage II patient samples or
were  removed  due  to  missing  treatment  and  time  to  follow
up/death  covariates,  ultimately  leaving  318  samples  for  the
validation set.

Given  the  specific  nature  of  collecting  gene  expression
data, a source of potential variation arises from how the gene
expression data is obtained. Unwanted nonbiological variation
may  be  caused  by  different  procedures  and  methods  of
handling specimen to the laboratory where the data is collected
or  by  the  researcher  who collects  the  data.  Thus,  we use  the
Robust  Multichip  Average  (RMA)  method  to  normalize  the
training and validation datasets. We note that the validation set
used in this analysis contains only lung adenocarcinomas.

By  implementing  lasso  conditions  to  help  prevent
overfitting  and  reduce  model  variance  given  the  high-
dimensional  nature  of  the  genomic  data,  risk  scores  were
estimated  by  the  regularized  Cox  regression  model  at  the
individual patient level. The scores were stratified patients into
low-risk  and  high-risk  groups  respective  to  chemotherapy
treatment. Low-risk patients were recommended ACT by the
model,  while high-risk patients were recommended OBS. To
find  the  optimal  penalties  in  the  lasso  method,  a  LOOCV
scheme was implemented by using a modified cross-validation
score for the survival data. Within the JBR.10 training set, 65
patients  who  followed  the  predicted  recommendation  by  the
model exhibited significantly higher survival than 68 patients
who did not follow the predicted recommendation (p < .0010).

Besides age, stage, and gender as clinical and demographic
covariates, a set of potential genomic markers were selected by
the  proposed  model.  Those  selected  probe  sets  significantly
interacted with the treatment showing a potential relationship
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between  NSCLC  and  chemotherapy.  For  example,  the
overexpression of the PROM1 gene appeared to be associated
with a poorer prognosis of NSCLC [20]. The CLIC3 gene has
been previously identified as a prognostic NSCLC biomarker
[21].  Similarly,  G-antigen  family  genes  appear  to  determine
sensitivity to drugs like cisplatin and etoposide that are used in
adjuvant chemotherapy [19].

This  research  utilized  an  independent  validation  dataset
involving 318 lung cancer patients to validate the models. In
the validation set with 318 patients, the modified covariate Cox
model  with  lasso  penalty  were  able  to  show  patients  who
followed their predicted recommendation (either ACT for low-
risk  group  or  OBS  for  the  high-risk  group;  n  =  171)  have
higher survival benefits than 147 patients who did not follow it
(p  <.0001).  The  lasso  penalty  produced  a  resulting
parsimonious model. The results on the validation set suggest
that  the  presented  modified  covariate  regularized  Cox
regression  model  with  the  lasso  penalty  shows  a  convincing
outcome  in  determining  the  benefit  from  personalized
treatment.

The clinical and demographic covariates in this paper were
limited to  the  ones  present  in  the  JBR.10 training set,  which
consisted  of  lung  cancer  stage,  patient  age,  and  patient  sex.
Future  studies  may  incorporate  more  clinical  covariates  to
determine  treatment  interactions,  given  that  many  clinical
covariates directly correlate with patient health. Neutropenia is
a severe side effect of chemotherapy treatment, and for this, an
example  of  a  potential  critical  covariate  would  be  the  White
Blood Cell Count (WBC) or Complete Blood Count (CBC) of
a patient that should be incorporated.
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