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Abstract:

Aims:

The aim of the present study was to explore changes in the serum metabolome of patients with NAFLD relative to healthy controls to identify
biomarkers associated with steatosis or Non-Alcoholic Steatohepatitis (NASH).

Background:

The serum metabolome reflects changes at the organismal level. This is especially important in Non-Alcoholic Liver Disease (NAFLD), where
changes in hormones, cytokines, enzymes and other metabolic alterations can affect the liver, as well as adipose tissue, skeletal muscle and other
systems.

Objective:

The objectives were to conduct non-targeted serum metabolomics, data processing, and identification of candidate biomarkers, as well as panels
and assessment of their prognostic value.

Materials and Methods:

Non-targeted metabolomic analysis of blood serum samples from 21 male patients with NAFLD (simple steatosis or NASH) and seven male
Control group was performed using gas chromatography-mass spectrometry.

Results:

A total of 319 serum metabolites were detected in NAFLD and Control groups, several of which differed significantly between groups. The most
discriminating biomarkers were 3-hydroxybutyric acid, 2-hydroxybutyric acid, 2,3-dihydroxybutyric acid, arabitol and 3-methyl-2-oxovaleric acid.
Using a panel of three, four or more markers could distinguish patients with NAFLD from controls, and patients with NASH from those with
simple steatosis.

Conclusion:

We identified candidate biomarkers for simple steatosis and NASH. Since NAFLD is a multifactorial disease, it is preferable to use a marker panel
rather than individual metabolites. Markers may not only result from dysregulation of metabolic pathways in patients with NAFLD, they may also
reflect adaptive responses to disease, including functional changes in the intestinal microbiota.
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1. INTRODUCTION

Chronic  Liver  Disease  (CLD),  and  especially  Non-

Alcoholic  Fatty  Liver  Disease  (NAFLD),  is  becoming  an
increasing burden worldwide, both medically and financially.
The global prevalence of NAFLD is ~25% [1]. Since 60-75%
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of CLD patients are predicted to suffer from NAFLD, the total
number  of  patients  with  CLD  may  be  in  the  range  of  2.5-3
billion people worldwide.

NAFLD is associated with obesity, insulin resistance, type
2 diabetes  mellitus,  arterial  hypertension,  dyslipidaemia,  and
metabolic  syndrome.  NAFLD  stages  range  from  Simple
Steatosis  (SS)  to  Non-Alcoholic  Steatohepatitis  (NASH),
which  can  progress  to  fibrosis  and  cirrhosis,  Hepatocellular
Carcinoma  (HCC),  and  liver  transplantation.  NASH  is  an
important  cause  of  liver  cirrhosis.  From  1990  to  2017,  the
prevalence of compensated cirrhosis due to NASH more than
doubled,  and  cases  of  decompensated  cirrhosis  more  than
tripled  due  to  NASH  [2].

Until recently, the ‘two hits’ theory was routinely applied
to  NAFLD  pathogenesis,  in  which  the  first  hit  is  steatosis
development, and the second hit is steatohepatitis. This concept
is now outdated and has been replaced by the ‘multiple hits’
hypothesis,  which  more  accurately  reflects  the  complex
mechanisms triggering the onset and progression of NAFLD.
This  concept  includes  pathogenetic  factors  such  as  insulin
resistance, adipose tissue hormones, obesity, diet, genetic and
epigenetic factors, as well as the gut-liver axis, which appears
to  play  a  key  role  in  the  development  and  progression  of
NAFLD.  The  leading  players  in  this  axis  are  the  gut
microbiota,  bacterial  metabolites  and  intestinal  barrier  [3].

Early  diagnosis  of  NAFLD  and  monitoring  of  disease
progression  via  metabolomics  is  extremely  important.
Metabolites determine the molecular phenotype of an organism
since  they  are  the  substrates,  intermediates  and  products  of
biochemical reactions. Therefore, changes are reflected in the
metabolome, including those associated with the progression of
pathological  processes.  In  particular,  serum  metabolome
analysis  provides  an  opportunity  for  efficient  diagnosis  of
various  diseases  [4].  Technological  advances  in  recent  years
make  it  possible  to  identify  hundreds  or  even  thousands  of
metabolites in a single sample in just a few minutes, which is
ideal  for  the  diagnosis  of  multifactorial  diseases  such  as
NAFLD  [5,  6].

In the present study, we compared the serum metabolomes
of  individuals  with  simple  steatosis  or  NASH  with  those  of
controls. Together with the accumulating literature, our results
indicate  that  markers  may  not  only  reflect  dysregulation  of
metabolic pathways, but also adaptive responses to disease, and
they may indicate regulatory effects on organisms [7 - 11].

2. MATERIALS AND METHODS

2.1. Subjects

The subjects in this study comprised 28 males aged 49 ± 5
years. Only male patients were included because NAFLD is a
sexual  dimorphic  disease,  and  high  levels  of  oestrogen  can
protect against NAFLD development and progression [12]. In
addition,  there  are  gender-specific  differences  in  the  human
metabolome;  about  a  third  of  serum  metabolites  differ
significantly between males and females [13, 14]. The subjects

*  Address  correspondence  to  this  author  at  the  Department  of  Microbiology,
State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia;
E-mail: lenna_22@mail.ru

included seven male controls, 10 patients with simple steatosis
(SS) and 11 with NASH. Patients were recruited from North-
Western State Medical University named after I.I. Mechnikov.
Diagnosis  of  NAFLD  was  confirmed  by  anamnesis  data,
laboratory  and  instrumental  research  methods,  non-invasive
tools  (FibroMax  [BioPredictive,  Paris,  France])  and  liver
biopsies.  Exclusion  criteria  included  chronic  viral  hepatitis,
autoimmune-,  alcoholic-,  drug-induced,  and  genetic-related
liver  disease.  A  fasting  blood  sample  was  obtained  from
subjects in the morning, serum was separated by centrifugation
and stored at - 40°C until analysis.

2.2. Ethics

The study protocol was approved by the Ethics Boards of
North-Western  State  Medical  University  named  after  I.I.
Mechnikov  (Protocol  Nº7),  and  it  conformed  to  the  ethical
guidelines of the 1975 Declaration of Helsinki. All participants
gave  their  informed  written  consent.  All  methods  were
performed  in  accordance  with  the  relevant  guidelines  and
regulations  of  North-Western  State  Medical  University  and
State Research Institute of Highly Pure Biopreparations.

2.3. Sample Preparation

Samples were thawed at room temperature and metabolites
were  extracted  with  acetonitrile  (Cryochrome,  Russia)  with
simultaneous  precipitation  of  proteins.  A  0.1  ml  volume  of
serum was removed from chilled samples, added to 0.5 ml of
acetonitrile, vortexed for 3 min, centrifuged at 13,000 rpm for
3 min, and the clear supernatant was collected. The resulting
extract was dried under a stream of nitrogen until a dry residue
was  obtained.  An  internal  standard,  tridecanoic  acid
trideuteromethyl ester (2 mg/ml or 8.7 mM; FisherSci, USA)
dissolved in methanol, was added to the dry residue and dried
again.  Derivatives  were  prepared  by  silylation  using  N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA; Supelco, USA).

2.4. GC-MS Analysis

Gas  Chromatography-Mass  Spectrometry  (GC-MS)
analysis  was  carried  out  using  a  GCMS-QP2010  Plus
instrument  (Shimadzu,  Japan)  equipped  with  an  Agilent  HP
Ultra-2  analytical  capillary  column  containing  (5%-phenyl)-
methylpolysiloxane resin (25 m length, 0.2 mm inner diameter,
0.25  μm  stationary  phase  film  thickness).  The  column  was
heated  from  50  to  290°C  at  10oC/min.  The  volume  of  the
injected  sample  was  100  μl,  the  flow  division  was  1:50,  the
carrier gas (helium) flow rate was 1 ml/min, and the injector
and detector temperature was 280°C. The chromatogram was
recorded in two modes; (1) from 1 min to 6.4 min, monitoring
of ions m/z 103, 117 and 145 (Selected Ion Monitoring (SIM)
mode); (2) from 6.4 min to 40 min, total ion current monitoring
in the mass range 35 to 550 (scan mode). Each chromatogram
was obtained by recording the total ion current at a frequency
of 2.5 scans/s.

2.5. Data Processing

Raw  datasets  were  acquired  using  GCMS  Analysis
software (GCMS solution, Shimadzu, Japan). Firstly, was used
g MetAlign data pre-processing tool (www.wur.nnl/Onderzoek
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-Resultaten/Onderzoeksinstituten/food-safety-research/show-
rikilt/MetAlign.htm),  followed  by  AIoutput  software
(www.prime.psc.riken.jp/Metabolomics_Software/AIoutput/in
dex.html),  which  can  perform  the  peak  identification,
prediction, and data integration from the result exported from
MetAlign.  Next,  peak  detection,  deconvolution  and
identification according to retention index (RI), retention time
(RT) and mass spectra were performed using GCMS solution
and  Automated  Mass  Spectrometry  Deconvolution  and
Identification  System  software  (AMDIS,  www.amdis.net,
version  2.73)  with  the  National  Institute  of  Standards  and
Technology  (NIST)  database.  Additionally,  identification  of
compounds  was  performed  using  the  Human  metabolome
database (HMDB, www.hmdb.ca) and the GOLM metabolome
database  (GOLM,  www.gmd.mpimp-golm.mpg.de).  To
confirm  compounds,  at  least  three  characteristic  ions  were
used.  Mass  spectra  were  considered  annotated  when  they
matched  the  library  variant  with  a  match  factor  ≥  80.  The
amount of compound in each sample was calculated using the
internal area normalisation method. The peak area of the total
ionic current of a compound was divided by the peak area of
the  internal  standard,  and  the  obtained  value  was  the
normalised  amount  of  compound  in  the  sample.

2.6. Statistical Analysis

Differences in the clinical parameters between the control
group  and  patients  were  tested  using  Student’s  t-test.
Significance was defined as p<0.05. Metabolomics data were
assessed by Principal Component Analysis (PCA). The search
for  biomarkers  that  can  distinguish  between different  groups
was carried out using multivariate analysis, comprising partial
least squares discriminant analysis (PLS-DA), Support Vector
Machine  (SVM)  analysis,  and  a  Naïve  Bayes  simple
probabilistic classifier. The results of experiments were used to
construct a table containing the accuracy and variance for the
compared  methods  and  predicted  uncertainty  matrices.  As  a
result,  a  Receiver  Operating Characteristic  (ROC) curve was
plotted  for  each  classifier,  and  classifiers  with  the  highest
sensitivity  and  specificity  (AUC)  values  were  chosen.  Each
classifier  ranked  all  compounds  in  descending  order  of
importance. From this list, the first 30 compounds contributing
most to the differences between the two groups were selected.
Mann-Whitney tests were performed to compare data obtained
from  experimental  groups,  and  p  <0.05  was  considered
significant. Statistical analysis of the data was performed using
the  freely  available  R  software  package  (http://cran.r-
project.org/). For each candidate biomarker, ROC curves were
plotted  and  AUC  values  were  determined.  Selecting  the
optimal combination of biomarkers is a complex process and
requires  the  integration  of  data  signatures  using  advanced
statistical  techniques.  To  select  the  biomarker  panels,
CombiROC  software  was  employed  (www.combiroc.eu).

3. RESULTS

The  study  involved  male  patients  with  NAFLD,  and
controls  with  non-pathological  liver  ultrasound  patterns,
normal non-invasive blood test (FibroMax) results, and normal
Alanine  Transaminase  (ALT)  and  Aspartate  Transaminase
(AST)  levels  (Table  1).  Body  Mass  Index  (BMI)  was  25-30

kg/m2  for  controls,  and  30-35  kg/m2  (class  I  obesity)  for
patients with NAFLD. Patients were characterised by increased
ALT  and  AST  levels  and  significant  steatosis  (progressive
stages of fibrosis were observed in some patients with NASH).

Table  1.  Clinical  characteristics  of  patients  with  NAFLD
and controls.

Indicator Controls
(n = 7)

Simple Steatosis
(n = 10)

NASH
(n = 11)

Age (years) 49.8 ± 6.1 49.3 ± 5.4 48.4 ± 6.1
BMI (kg/m2) 27.6 ± 0.6 31.0 ± 2.5a 32.6 ± 1.9a

AST (U/l) 20.1 ± 8.2 34 ± 11.2b 64.3 ± 31.2a, b

ALT (U/l) 15.8 ± 7.4 60.1 ± 38.8a, b 104.4 ± 61.7 a, b

Steatosis degree
0/1/2/3 7/0/0/0 0/2/4/4 0/0/4/7

Fibrosis degree
0/1/2/3 7/0/0/0 4/6/0/0 0/2/7/2

a Significant at p<0.05 SS or NASH groups vs. control group.
b Significant at p<0.05 SS group vs. NASH group.

We identified 319 metabolites in patients with NAFLD and
controls. To visualise the differences between the metabolomes
of patients and controls, PCA was employed. Control samples
were grouped on the left side of the plane relative to the axis of
Principal Component 1 (PC1), and SS samples are distributed
at different distances from each other, mainly along the right
side  of  the  plane  (Fig.  1A).  The  seven  NASH  samples  are
located  at  a  distance  from  controls,  and  the  four  samples
overlap (Fig. 1B). The SS and NASH samples are spread out
over  the  plane,  and  the  steatosis  group  is  different  from  the
NASH group (Fig. 1C).

Compared with controls, the metabolomes of patients with
SS were characterised by a significant increase in the amount
of  hydroxy  acids:  2-hydroxybutyric  acid  (8.1-fold),  3-
hydroxybutyric  acid  (β-OHB,  a  ketone  body,  5.8-fold),  2-
hydroxy-3-methyl  butyric  acid  (3.4-fold);  amino  acids:
threonine (7.5-fold), proline (5.3-fold), pyroglutamic acid (4.9-
fold),  and isoleucine,  amino acid  with  a  branched side  chain
(6.0-fold);  sugar  D-xylose  (14.7-fold)  and  sugar  alcohols
arabitol (12.3-fold); and a number of unidentified compounds
(Supplementary  Material-1).  Patients  with  NASH  showed
significantly higher serum levels of 3-methyl-2-oxovaleric acid
(6.8-fold  increase)  and  another  four  unidentified  compounds
than  those  with  SS.  A  significant  increase  in  levels  of  2,3-
dihydroxybutyric  acid  (7.3-fold),  arabitol  (17.9-fold),  and
another  five compounds was observed in  serum from NASH
patients relative to controls.

Candidate  biomarkers  were  identified  using  multivariate
analysis (SVM, PLS-DA and Naïve Bayes). The classifier was
chosen  based  on  the  largest  area  under  the  ROC  curve  of
sensitivity and specificity. When comparing patients with SS
and  controls,  the  classifier  was  SVM  (AUC  =  0.961).  The
average accuracy of the classifier was 0.87, the variance of the
accuracy  was  0.026,  the  sensitivity  was  88.2%,  and  the
specificity was 83.2%. Based on SVM analysis, all compounds
were  sorted  in  decreasing  order  of  importance.  The  first  30
compounds  were  selected  for  further  statistical  analysis,  and
nine  of  these  compounds  differed  significantly  (p  <  0.05)
between  patient  and  control  groups  (Table  2).

http://www.wur.nnl/Onderzoek-Resultaten/Onderzoeksinstituten/food-safety-research/show-rikilt/MetAlign.htm
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Fig. (1).  PCA of serum metabolome data from NAFLD patient and Control groups. (A)  Controls (triangles) and Simple Steatosis (SS) patients
(circles). (B) Controls (triangles) and NASH patients (dots). (С) SS (circles) and NASH (dots) patients. An eigenvalue scale is employed.

Table 2. Candidate biomarkers of SS.

Compound Name or RT Characteristic Ions Fold Change*
(SS/Controls)

p-value
(Mann-Whitney U Test) Metabolic Pathways

3-hydroxybutyric acid 87;99;101 5.8 0.003 Fatty acid biosynthesis
20.523_compound 103;117;161 3.2 0.003 -
20.645_compound 191;204;217 11.1 0.005 -
15.399_compound 156;172;216 0.21 0.0007 -
19.355_compound 129;147;157 106.6 0.0004 -

Arabitol 103;117;129 12.3 0.002 Interconversion of pentose and glucoronate
25.244_compound 95;103;129 2.5 0.013 -

2-hydroxybutyric acid 87;95;101 8.1 0.001 Metabolism of cysteine, methionine, S-
adenosylmethionine and taurine

19.855_compound 133;147;189 21.6 0.007 -
Compounds are arranged in order of importance for distinguishing SS vs. Control groups.
RT, retention time (min); *, the ratio of the medians.

Some compounds were not  annotated,  but  their  retention
time (RT), a set of characteristic ions, and their mass spectra
could  still  be  used.  In  patients  with  SS,  levels  of  eight
compounds  were  increased,  while  15.399_compound  was
decreased approximately five-fold compared with controls. 3-

hydroxybutyric  acid  (β-OHB),  2-hydroxybutyric  acid,  and
arabitol  were  identified  as  candidate  biomarkers.  The
normalised levels of candidate biomarkers in serum are shown
in  (Fig.  2).  Notably,  levels  of  these  compounds  differ  more
between patients in the SS group than in controls.
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Fig. (2). Box plots of serum levels of candidate biomarkers in SS and Control groups. The level of compound normalised against internal control is
presented on the y-axis. Only candidate biomarkers that differ significantly (p <0.05) between controls and SS patient groups are shown.

Next,  was  identified  candidate  biomarkers  that  could
distinguish patients with SS from those with NASH. Analysis
of ROC curves for three classifiers showed that the largest area
under the curve corresponded to PLS-DA (AUC = 0.992). The
average accuracy of  the classifier  was 0.985,  the variance of
the accuracy was 0.0035, and sensitivity and specificity were
98.5%.  It  was  shown  levels  of  3-methyl-2-oxovaleric  acid,
21.229_compound,  and  15.399_compound  differed
significantly  between  the  two  groups  (Table  3).

Levels of all compounds increased by more than two-fold
in  the  serum  of  patients  with  NASH  compared  with  the  SS

group and varied greatly (Fig. 3).

Multivariate  analysis  of  the  metabolomes  of  NASH
patients and controls based on three classifiers showed that the
largest area under the ROC curve corresponded to SVM (AUC
= 0.788). The average accuracy of the classifier was 0.81, the
variance of the accuracy was 0.027, the sensitivity was 100%,
and the specificity was 63.7%. Following SVM analysis, 2,3-
dihydroxybutyric  acid,  arabitol,  13.309_compound,  21.229
_compound,  and  19.355_compound  differed  significantly
between  the  groups,  and  were  selected.  Levels  of  all  these
compounds were increased in patients with NASH (Table 4).

Table 3. Candidate biomarkers for distinguishing NASH and SS patients.

Compound Name or RT Characteristic Ions Fold Change
(NASH)/(SS)

p-value
(Mann-Whitney U Test) Metabolic Pathways

3-methyl-2oxovaleric acid 85;101;113 6.8 0.010 Metabolism of valine, leucine and isoleucine
21.229_compound 73;147;156 2.3 0.029 -
15.399_compound 156;204;217 4.7 0.0008 -

Compounds are arranged in order of importance for distinguishing NASH vs. SS.
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Fig. (3). Box plots of serum levels of candidate biomarkers distinguish SS and NASH; the level of the compound normalized for internal control is
presented on the y-axis; only biomarkers which were significantly different (p <0.05) between SS and NASH are shown.

Table 4. Candidate biomarkers for NASH.

Compound Name or RT Characteristic Ions Fold Change
(NASH)/(Controls)

P-value
(Mann-Whitney U Test) Metabolic Pathways

13.309_compound 133;147;175 1.9 0.04 -
2,3-dihydroxybutyric acid 57; 73; 103 7.3 0.027 -

Arabitol 103;117;129 17.9 0.0008 Interconversion of pentose and glucoronate
21.229_ compound 73;147;156 2.2 0.02 -
19.355_ compound 129;147;157 99.0 0.0008 -

Compounds are arranged in order of importance for distinguishing NASH vs. Control groups.

The level  of  all  compounds  more  than  50% increased  in
serum of the patients with NASH. As in previous comparisons,

the normalized level of the candidate biomarkers varied greatly
in NASH group (Fig. 4).

Fig. (4). Box plots of serum levels of candidate biomarkers for NASH patients and controls. Level of compound normalised against internal control is
presented on the y-axis. Only candidate biomarkers that differ significantly (p <0.05) between NASH patients and controls are shown.
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Table 5. Results of ROC curve analysis of candidate biomarkers for NAFLD.

Compound Name or RT AUROC Sensitivity Specificity CI 95%
SS vs. Controls

3-hydroxybutyric acid 0.914 1 0.9 0.744-1
Arabitol 0.929 0.714 1 0.809-1

2-hydroxybutyric acid 0.943 1 0.9 0.8241-1
19.355_compound 0.971 1 0.9 0.9048-1
20.523_compound 0.914 1 0.8 0.7771-1
20.645_compound 0.900 1 0.9 0.704-1
15.399_compound 0.957 0.857 1 0.8629-1
25.244_compound 0.857 0.714 1 0.6535-1
19.855_compound 0.957 1 0.9 0.8641-1

NASH vs. SS
3-methyl-2oxovaleric acid 0.827 0.6 1 0.644-1

21.229_compound 0.782 0.7 0.818 0.578-1
15.399_compound 0.909 0.7 1 0.786-1

NASH vs. Controls
2,3-dihydroxybutyric acid 0.818 0.714 1 0.5727-1

Arabitol 0.948 1 0.818 0.8537-1
21.229_compound 0.831 1 0.545 0.6387-1
13.309_compound 0.792 1 0.545 0.5752-1
19.355_compound 0.948 1 0.818 0.8533-1

CI 95%, 95% confidence interval.

ROC  curves  were  constructed,  and  the  Area  Under  the
Curve  (AUC)  was  calculated  for  each  candidate  biomarker.
The  area  under  the  ROC  curve  ranged  from  0.782  to  0.971
(Table 5).

Finally, we analysed combinations of biomarkers. In most
cases, panels yielded higher AUROC (0.998), sensitivity (1),
and  specificity  (1)  values  than  individual  biomarkers.  Paired
combinations  with  candidate  biomarkers  19.355_compound
and  20.523_compound  achieved  the  highest  prognostic
indicator  values  for  SS  and  Control  groups.  The  predictive
value  of  panels  of  three,  four  or  more  candidate  biomarkers
also yielded the highest values (AUROC = 0.998, sensitivity =
1, specificity = 1). The panel including 3-methyl-2-oxovaleric
acid, 15.399_compound, and 21.229_compound achieved the
highest  prognostic  value  for  distinguishing  SS  and  NASH
patients.  The  panel  with  21.229_compound  and  arabitol,  as
well  as  panels  of  three,  four  and  five  candidate  biomarkers
achieved  the  highest  AUROC  (0.998),  sensitivity  (1),  and
specificity (1)  values for  distinguishing NASH patients  from
controls.

4. DISCUSSION

Pathological  processes  lead  to  changes  in  specific
metabolic pathways, which is in turn reflected by changes in
serum  metabolites  (i.e.  the  serum  metabolome).  Thus,
metabolites  are  not  only  indicators  of  the  dysregulation  of
metabolic  pathways  but  factors  of  pathogenesis  and/or  the
responses  to  a  pathological  state.

In the present study, we compared the serum metabolomes
of  patients  with  NAFLD  and  controls  with  non-pathological
liver.  The  software  packages  used  for  data  processing
identified 319 compounds and 108 compounds were previously

annotated.  Non-annotated  compounds  were  characterised  by
retention  time  and  characteristic  ions.  The  distribution  of
samples from patients and controls obtained by PCA revealed
differences in metabolomic profiles between patients with SS
and  NASH,  and  between  both  patient  and  control  groups.
Conversely,  similarities  between  groups  may  indicate
similarity  between  metabolomic  profiles.

The  metabolome  analysis  results  revealed  significant
changes  in  certain  key  pathways,  specifically  glutathione
metabolism,  and  lipid  and  amino  acid  metabolism
(Supplementary Material 1). Some of the identified metabolites
for  which  levels  varied  significantly  between  groups
(isoleucine,  proline,  3-hydroxybutiric  acid,  arabitol,  3-
methyl-2-oxovaleric  acid,  2-hydroxy-3-methylbutyric  acid)
were related to endogenous and/or microbial production. For
example,  the  increase  in  2-hydroxy-3-methylbutyric  acid  (2-
hydroxyisovaleric acid) in patients with SS could be the result
of  increased  production  by  Proteus  mirabilis,  Eggerthella
lenta,  or  Listeria  spp.,  as  well  as  chronic  intestinal
inflammation  [15].  Among  the  amino  acids  was  identified
isoleucine  (6-fold  increased in  patients  with  SS compared to
controls,  p  =  0.025),  a  member  of  the  branched-chain amino
acid  (BCAA)  group,  which  has  been  associated  with  an
increased risk of metabolic disease, including insulin resistance
(IR) and NAFLD [16, 17]. The level of pyroglutamic acid (or
5-oxoproline)  in  patients  with  SS  was  5-fold  higher  than
controls (p = 0.01). Another previous study demonstrated the
high  diagnostic  value  of  pyroglutamic  acid,  for  separating
patients  with  steatosis  from  patients  with  NASH  [18].  The
concentration  of  pyroglutamate  in  serum  of  patients  with
steatosis  was  increased  1.56-fold  compared  with  the  control
group,  and  2.26-fold  in  patients  with  NASH  compared  with
steatosis.  In  our  current  work,  the  results  of  multivariate
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analysis indicated that this compound was not a biomarker. In
addition,  an  increase  in  the  level  D-xylose  (14.7-fold)  was
observed  in  serum,  which  is  presumably  associated  with
increased intestinal permeability in disease patients. A similar
explanation appears  to  be applicable for  the increased serum
level 1-kestose in serum from NASH patients.

Multivariate analysis of the metabolomes of patients with
SS  and  controls  showed  that  the  levels  of  nine  candidate
biomarkers  differed  significantly  between  SS  and  control
groups.  The  SS  patients  displayed  a  5.8-fold  increase  in  3-
hydroxybutyric  acid  (β-hydroxybutyrate,  β-OHB),  a  major
ketone body. Most ketone bodies are produced in the liver [19],
although  small  amounts  can  be  produced  in  other  tissues
through  the  aberrant  expression  of  ketogenic  enzymes  or
alteration of the ketolysis pathway. The observed increase in 3-
hydroxybutyric acid is probably associated with an increase in
beta-oxidation, as well as an increase in oxidative metabolism
in  the  liver  in  general.  Increased  levels  of  this  metabolite  in
patients  with  SS  were  reported  previously.  Interestingly,  the
authors reported a decrease in 3-hydroxybutyric acid with the
progression from SS to NASH [20]. Presumably, an increase in
β-OHB is an adaptive response that protects the liver against
NAFLD  progression  during  the  early  stages  of  SS.
Subsequently,  the  progression  of  NAFLD  leads  to  impaired
ketogenesis  and  the  development  of  maladaptive  ketogenic
insufficiency,  contributing  to  NASH  and  hyperglyacemia.
Therefore,  levels  of  β-OHB  in  NASH  may  decrease  [8,  9].

The  second  most  important  biomarker  was  2-
hydroxybutyric acid, level of which was increased 8.1-fold in
patients.  This  compound  is  derived  from  α-ketobutyric  acid,
which is formed mainly in the liver during the catabolism of L-
threonine,  and  the  synthesis  of  glutathione  [21].  Oxidative
stress  or  enhanced  detoxification  of  xenobiotics  in  the  liver
stimulates a sharp increase in the rate of glutathione synthesis,
which  can  lead  to  increased  production  of  2-hydroxybutyric
acid  as  an  intermediate  metabolic  product  [22,  23].  Recent
studies  have  shown  that  an  increased  concentration  of  2-
hydroxybutyric acid may reflect early signs of IR, and serve as
an  independent  predictor  of  the  development  of  impaired
glucose tolerance (prediabetes) and early-stage type 2 diabetes
[22, 24 - 27].

In the SS group, the sugar alcohol arabitol was increased
12.3-fold relative to controls. Sugar alcohols are hydrogenated
forms of carbohydrates in which the carbonyl group (aldehyde
or  ketone-reducing  sugar)  has  been  reduced  to  a  primary  or
secondary  hydroxyl  group.  Increased  levels  of  arabitol  in
plasma and urine have been reported earlier for patients with
congenital cirrhosis of the liver due to transaldolase deficiency
[28].

It should be emphasised that we observed a high degree of
variability in the amounts of the identified markers in patient
serum.  Since  the  serum  metabolome  reflects  all  changes  in
tissues and organs, and not just any individual organ, this may
be  especially  important  for  NAFLD.  Changes  in  hormones,
cytokines, enzymes and other metabolic alterations can affect
not only the liver, but also adipose tissue, skeletal muscle, and
other  systems.  Thus,  the  observed  variability  may  be  due  to
differences  in  the  state  of  organs  and  systems  in  different

patients  or  to  changes  in  metabolite  levels  over  time.

Three  candidate  biomarkers  distinguishing  the  SS  and
NASH  groups  were  identified:  3-methyl-2-oxovaleric  acid,
21.229_compound,  and  15.399_compound.  The  most
significant among them was 3-methyl-2-oxovaleric acid, which
increased  6.8-fold  with  the  progression  of  NAFLD.  This
metabolite is the first product of isoleucine degradation, and an
increase in its concentration in serum indicates an increase in
BCAA degradation. Another study demonstrated a correlation
between  the  level  of  3-methyl-2-oxovaleric  acid  and  the
development  of  type  2  diabetes  mellitus  [29].  A  recent  pilot
study  of  the  effects  of  curcumin  on  the  serum  metabolomic
profile  of  patients  with  NAFLD  showed  that  certain  BCAA
degradation products, such as 3-methyl-2-oxovaleric acid and
3-hydroxyisobutyrate,  could  consider  both  biomarkers  and
therapeutic  targets  for  NAFLD  [30].  It  is  possible  that  an
increase in the level of this acid is associated not only with the
increased  degradation  of  BCAAs,  but  also  with  their
production by the microbiota. Thus, in NAFLD, the amount of
isoleucine  produced  by  bacteria  (Bacteroides  vulgatus,
Prevotella  copri,  Streptococcus  sp.,  Clostridium  sp.,
Eubacterium rectale)  is  increased [16,  31,  32].  Additionally,
the  body’s  responses  to  a  pathological  process  can  alter
metabolite  levels.  For  example,  when  steatosis  progresses  to
steatohepatitis,  levels  of  BCAA:  leucine  (127%),  isoleucine
(139%)  and  valine  (147%)  are  increased,  while  leucine
supplementation  activates  the  target  of  rapamycin  (mTOR),
which is  a  critical  mediator  regulating protein synthesis,  cell
proliferation  and  insulin  sensitivity  [33,  34].  In  addition,
BCAAs  exert  protective  inhibition  in  cancer  development.
Thus, they may be increased under certain conditions, and their
degradation products can be considered an adaptive response of
the liver to oxidative stress during the NASH stage [35].

Multivariate  analysis  of  NASH  patient  and  control
metabolomes allowed us to identify five candidate biomarkers.
Their  levels  were  increased  from  1.9-  (compound  13.309_
compound)  to  99-fold  (compound  19.355_compound)  in  the
serum  of  patients  with  NASH.  The  second  and  third  most
important  biomarkers  were  2,3-dihydroxybutyric  acid  and
arabitol;  their  levels  were  increased  by  7.3-  and  17.3-fold,
respectively. 2,3-Dihydroxybutyric acid has two enantiomers:
4-deoxyerythronic acid ((2R,3R)-2,3-dihydroxybutanoic acid)
and  4-deoxythreonic  acid  ((2S,3R)-2,3-dihydroxybutanoic
acid). Currently, very little is known about the pathways of the
formation  of  these  entiomers.  It  is  assumed  that  the  main
source  of  4-deoxyerythronic  acid  is  threonine.  It  has  been
found to be inversely associated with age in adults  [36],  and
higher levels of 4-deoxyerythronic acid, 4-deoxythreonic acid,
and 2-hydroxybutyric acid have been observed in children with
type  I  diabetes  [37].  4-Deoxyerythronic  acid  is  presumably
formed  from  threonine  by  the  action  of  threonine
dehydrogenase,  which  is  a  relatively  minor  contributor  to
threonine  oxidation  in  humans  (about  10%)  [38].  Lau  C.E.
et  al.  suggest  that  an  increased  concentration  of  4-
deoxyerythronic  acid  may  result  not  only  from  endogenous
catabolism  of  threonine  but  also  from  exogenous  sources  or
microbial  metabolism  [39].  Since  it  is  assumed  that  2,3-
dihydroxybutyric acid may contribute to the pathophysiology
of metabolic disorders such as obesity and diabetes [37, 39],
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we hypothesize its possible involvement in the pathogenesis of
NAFLD.

All  candidate  biomarkers  yielded  good  or  excellent  test
results, but did not always have high sensitivity and specificity
(Table 5). Panels of three to eight biomarkers yielded excellent
test  results  with  high  sensitivity  and  specificity,  thus  it  is
preferable for diagnosis over the use of individual biomarkers.
Panels  of  biomarkers  have  been  successfully  applied  for  the
diagnosis of cancer, Parkinson’s disease, type 2 diabetes, and
other  multifactorial  diseases  [40  -  42].  NAFLD  is  a
multifactorial  disease,  and  given  the  various
pathophysiological  processes  involved  in  the  progression  of
NAFLD, it is doubtful whether a single marker could reflect all
pathological  changes.  By  contrast,  a  panel  of  markers  can
reflect  the  actual  pathophysiological  status  of  a  patient,
resulting in a more accurate diagnosis. In addition, the use of a
panel of biomarkers obviously reduces the risk of misdiagnosis
due  to  incorrect  identification  of  a  marker,  or  an  incorrect
measurement of its concentration in blood and also allows the
inclusion of non-annotated compounds.

CONCLUSION

In  conclusion,  we  identified  nine  biomarkers  of  SS,  five
biomarkers of NASH, and three biomarkers that distinguished
SS  from  NASH  patients.  Since  NAFLD  is  a  multifactorial
disease,  we  suggest  that  the  use  of  a  panel  of  markers  is
preferred over individual metabolites. We believe that markers
may  not  only  be  the  result  of  dysregulation  of  metabolic
pathways in patients with NAFLD, but may also play a role in
adaptive  responses  to  disease  and  may  therefore  reflect
functional changes in the intestinal microbiota. Further studies
with a larger population are needed to confirm our hypotheses,
and identify non-annotated biomarkers.

ETHICS  APPROVAL  AND  CONSENT  TO
PARTICIPATE

All procedures performed in the study were in accordance
with the ethical standards and approved by the local ethical and
deontology  committee  of  North-Western  State  Medical
University named after I.I. Mechnikov, St. Petersburg, Russia
(Protocol No. 7).

HUMAN AND ANIMAL RIGHTS

No animals were used in this research. All human research
procedures  followed  were  in  conformity  with  the  ethical
standards  of  the  committees  responsible  for  human
experimentation  (institutional  and  national),  and  with  the
Helsinki  Declaration  of  1975,  as  revised  in  2013.

CONSENT FOR PUBLICATION

Written informed consent was obtained from all  subjects
prior to the study.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

This work was financially supported by a grant from the
President  of  the  Russian  Federation  (Grant  number
MK-2429.2020.4, agreement No. 075-11-2020-007, dated July
22, 2020).

CONFLICT OF INTEREST

The  authors  declare  no  conflict  of  interest,  financial  or
otherwise.

ACKNOWLEDGEMENTS

We  acknowledge  the  support  for  PhD  students  from  the
Department  of  Internal  Diseases,  Gastroenterology  and
Dietetics, North-Western State Medical University named after
I.I.  Mechnikov  Abatsieva  M.P.,  and  help  with  sample
preparation  from  senior  researchers  at  the  Department  of
Microbiology,  State  Research  Institute  of  Highly  Pure
Biopreparations,  Schalaeva  O.N.

SUPPLEMENTARY MATERIAL

Supplementary  material  is  available  on  the  publisher’s
website,  alongside  the  published  article.

REFERENCES

Asrani  SK,  Devarbhavi  H,  Eaton  J,  Kamath  PS.  Burden  of  liver[1]
diseases  in  the  world.  J  Hepatol  2019;  70(1):
151-71.https://pubmed.ncbi.nlm.nih.gov/30266282/
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
The global, regional, and national burden of cirrhosis by cause in 195[2]
countries  and  territories,  1990-2017:  a  systematic  analysis  for  the
Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol
2020; 5(3): 245-66.https://pubmed.ncbi.nlm.nih.gov/31981519/
[http://dx.doi.org/10.1016/S2468-1253(19)30349-8]  [PMID:
31981519]
Poeta  M,  Pierri  L,  Vajro  P.  Gut-Liver  Axis  Derangement  in  Non-[3]
Alcoholic  Fatty  Liver  Disease.  Children  (Basel)  2017;  4(8):
66.https://pubmed.ncbi.nlm.nih.gov/28767077/
[http://dx.doi.org/10.3390/children4080066] [PMID: 28767077]
Lokhov  PG,  Lisitsa  AV,  Archakov  AI.  Metabolomic  blood  test:[4]
purpose,  implementation  and  interpretation  of  data.  Biomed  Khim
2017;  63(3):  232-40.  Available  from:
https://pubmed.ncbi.nlm.nih.gov/28781256/
[http://dx.doi.org/10.18097/PBMC20176303232]
Gowda  GA,  Zhang  S,  Gu  H,  Asiago  V,  Shanaiah  N,  Raftery  D.[5]
Metabolomics-based  methods  for  early  disease  diagnostics.  Expert
Rev  Mol  Diagn  2008;  8(5):
617-33.https://pubmed.ncbi.nlm.nih.gov/18785810/
[http://dx.doi.org/10.1586/14737159.8.5.617] [PMID: 18785810]
Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a[6]
global biochemical approach to drug response and disease. Annu Rev
Pharmacol  Toxicol  2008;  48:
653-83.https://pubmed.ncbi.nlm.nih.gov/18184107/
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094715]
[PMID: 18184107]
Wang TJ, Larson MG, Vasan RS, et al.  Metabolite profiles and the[7]
risk  of  developing  diabetes.  Nat  Med  2011;  17(4):
448-53.https://pubmed.ncbi.nlm.nih.gov/21423183/
[http://dx.doi.org/10.1038/nm.2307] [PMID: 21423183]
Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies[8]
in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab 2017;
25(2): 262-84.https://pubmed.ncbi.nlm.nih.gov/28178565/
[http://dx.doi.org/10.1016/j.cmet.2016.12.022] [PMID: 28178565]
Fletcher  JA,  Deja  S,  Satapati  S,  Fu  X,  Burgess  SC,  Browning  JD.[9]
Impaired  ketogenesis  and  increased  acetyl-CoA  oxidation  promote
hyperglycemia  in  human  fatty  liver.  JCI  Insight  2019;
5(11)e127737https://pubmed.ncbi.nlm.nih.gov/31012869/
[http://dx.doi.org/10.1172/jci.insight.127737] [PMID: 31012869]

https://pubmed.ncbi.nlm.nih.gov/30266282/
http://dx.doi.org/10.1016/j.jhep.2018.09.014
http://www.ncbi.nlm.nih.gov/pubmed/30266282
https://pubmed.ncbi.nlm.nih.gov/31981519/
http://dx.doi.org/10.1016/S2468-1253(19)30349-8
http://www.ncbi.nlm.nih.gov/pubmed/31981519
https://pubmed.ncbi.nlm.nih.gov/28767077/
http://dx.doi.org/10.3390/children4080066
http://www.ncbi.nlm.nih.gov/pubmed/28767077
https://pubmed.ncbi.nlm.nih.gov/28781256/
http://dx.doi.org/10.18097/PBMC20176303232
https://pubmed.ncbi.nlm.nih.gov/18785810/
http://dx.doi.org/10.1586/14737159.8.5.617
http://www.ncbi.nlm.nih.gov/pubmed/18785810
https://pubmed.ncbi.nlm.nih.gov/18184107/
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094715
http://www.ncbi.nlm.nih.gov/pubmed/18184107
https://pubmed.ncbi.nlm.nih.gov/21423183/
http://dx.doi.org/10.1038/nm.2307
http://www.ncbi.nlm.nih.gov/pubmed/21423183
https://pubmed.ncbi.nlm.nih.gov/28178565/
http://dx.doi.org/10.1016/j.cmet.2016.12.022
http://www.ncbi.nlm.nih.gov/pubmed/28178565
https://pubmed.ncbi.nlm.nih.gov/31012869/
http://dx.doi.org/10.1172/jci.insight.127737
http://www.ncbi.nlm.nih.gov/pubmed/31012869


26   The Open Biomarkers Journal, 2021, Volume 11 Demyanova et al.

Vakhitov TYa, Chalisova NI, Sitkin SI, et al. Low-molecular-weight[10]
components  of  the  metabolome  control  the  proliferative  activity  in
cellular  and  bacterial  cultures.  Dokl  Biol  Sci  2017;  472(1):
8-10.https://pubmed.ncbi.nlm.nih.gov/28429257/
[http://dx.doi.org/10.1134/S0012496617010069] [PMID: 28429257]
Caussy C, Loomba R. Gut microbiome, microbial metabolites and the[11]
development of NAFLD. Nat Rev Gastroenterol Hepatol 2018; 15(12):
719-20.https://pubmed.ncbi.nlm.nih.gov/30158571/
[http://dx.doi.org/10.1038/s41575-018-0058-x] [PMID: 30158571]
Ballestri  S,  Nascimbeni  F,  Baldelli  E,  Marrazzo  A,  Romagnoli  D,[12]
Lonardo A. NAFLD as a Sexual Dimorphic Disease: Role of Gender
and  Reproductive  Status  in  the  Development  and  Progression  of
Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk.
Adv  Ther  2017;  34(6):
1291-326.https://pubmed.ncbi.nlm.nih.gov/28526997/
[http://dx.doi.org/10.1007/s12325-017-0556-1] [PMID: 28526997]
Krumsiek J,  Mittelstrass  K,  Do KT,  et  al.  Gender-specific  pathway[13]
differences  in  the  human  serum  metabolome.  Metabolomics  2015;
11(6): 1815-33.https://pubmed.ncbi.nlm.nih.gov/26491425/
[http://dx.doi.org/10.1007/s11306-015-0829-0] [PMID: 26491425]
Audano M, Maldini  M, De Fabiani  E,  Mitro N,  Caruso D.  Gender-[14]
related  metabolomics  and  lipidomics:  From  experimental  animal
models  to  clinical  evidence.  J  Proteomics  2018;  178:
82-91.https://pubmed.ncbi.nlm.nih.gov/29122727/
[http://dx.doi.org/10.1016/j.jprot.2017.11.001] [PMID: 29122727]
Sitkin SI, Vakhitov TY, Demyanova EV. Microbiome, gut dysbiosis[15]
and inflammatory bowel disease: That moment when the function is
more important than taxonomy Almanac of Clinical Medicine 2018;
46(5):  396-425.  Available  from:
https://www.almclinmed.ru/jour/article/view/878?locale=ru_RU#
Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations[16]
in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018;
67(1): 145-58.https://pubmed.ncbi.nlm.nih.gov/28802074/
[http://dx.doi.org/10.1002/hep.29465] [PMID: 28802074]
Lynch  CJ,  Adams  SH.  Branched-chain  amino  acids  in  metabolic[17]
signalling and insulin resistance. Nat Rev Endocrinol 2014; 10(12):
723-36.https://pubmed.ncbi.nlm.nih.gov/25287287/
[http://dx.doi.org/10.1038/nrendo.2014.171] [PMID: 25287287]
Qi S, Xu D, Li Q, et al. Metabonomics screening of serum identifies[18]
pyroglutamate  as  a  diagnostic  biomarker  for  nonalcoholic
steatohepatitis.  Clin  Chim  Acta  2017;  473:
89-95.https://pubmed.ncbi.nlm.nih.gov/28842175/
[http://dx.doi.org/10.1016/j.cca.2017.08.022] [PMID: 28842175]
Berg  J,  Tymoczko  J,  Stryer  L.  Biochemistry.  Basingstoke:  W.H.[19]
Freeman 2012.
Männistö VT, Simonen M, Hyysalo J, et al. Ketone body production is[20]
differentially altered in steatosis and non-alcoholic steatohepatitis in
obese  humans.  Liver  Int  2015;  35(7):
1853-61.https://pubmed.ncbi.nlm.nih.gov/25533197/
[http://dx.doi.org/10.1111/liv.12769] [PMID: 25533197]
Landaas S. The formation of 2-hydroxybutyric acid in experimental[21]
animals.  Clin  Chim  Acta  1975;  58(1):
23-32.https://pubmed.ncbi.nlm.nih.gov/164303/
[http://dx.doi.org/10.1016/0009-8981(75)90481-7] [PMID: 164303]
Sitkin  SI,  Vakhitov  TYa,  Tkachenko  EI,  et  al.  Gut  microbial  and[22]
endogenous  metabolism  alterations  in  ulcerative  colitis  and  celiac
disease: A metabolomics approach to identify candidate biomarkers of
chronic intestinal inflammation associated with dysbiosis. Eksp Klin
Gastroenterol  2017;  7:  4-50.  Available  from:
https://www.nogr.org/jour/article/view/449?locale=en_US#
Xu Y, Han J, Dong J, et al. Metabolomics Characterizes the Effects[23]
and  Mechanisms  of  Quercetin  in  Nonalcoholic  Fatty  Liver  Disease
Development.  Int  J  Mol  Sci  2019;  20(5):
1220.https://pubmed.ncbi.nlm.nih.gov/30862046/
[http://dx.doi.org/10.3390/ijms20051220] [PMID: 30862046]
Gall  WE,  Beebe K,  Lawton KA, et  al.  alpha-hydroxybutyrate  is  an[24]
early  biomarker  of  insulin  resistance  and  glucose  intolerance  in  a
nondiabetic  population.  PLoS  One  2010;
5(5)e10883https://pubmed.ncbi.nlm.nih.gov/20526369/
[http://dx.doi.org/10.1371/journal.pone.0010883] [PMID: 20526369]
Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of[25]
the  development  of  dysglycemia  and  type  2  diabetes  and  their
physiological  significance.  Diabetes  2013;  62(5):
1730-7.https://pubmed.ncbi.nlm.nih.gov/23160532/
[http://dx.doi.org/10.2337/db12-0707] [PMID: 23160532]
Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver[26]
disease is associated with dysbiosis independent of body mass index

and  insulin  resistance.  Sci  Rep  2018;  8(1):
1466.https://pubmed.ncbi.nlm.nih.gov/29362454/
[http://dx.doi.org/10.1038/s41598-018-19753-9] [PMID: 29362454]
Li  X,  Xu  Z,  Lu  X,  et  al.  Comprehensive  two-dimensional  gas[27]
chromatography/time-of-flight mass spectrometry for metabonomics:
Biomarker  discovery  for  diabetes  mellitus.  Anal  Chim  Acta  2009;
633(2): 257-62.https://pubmed.ncbi.nlm.nih.gov/19166731/
[http://dx.doi.org/10.1016/j.aca.2008.11.058] [PMID: 19166731]
Burgard P, Burlina A, Bonafë L, et al. Abstracts, VIIIth International[28]
Conference  on  Inborn  Errors  of  Metabolism,  Cambridge,  UK  J
Inherited  Metab  Dis  2000;  23:  13-7.(1)  1-300.  Available  from:
https://onlinelibrary.wiley.com/toc/15732665/2000/23/1
Concepcion J, Chen K, Saito R, et al. Identification of pathognomonic[29]
purine synthesis biomarkers by metabolomic profiling of adolescents
with  obesity  and  type  2  diabetes.  PLoS  One  2020;
15(6)e0234970https://pubmed.ncbi.nlm.nih.gov/32589682/
[http://dx.doi.org/10.1371/journal.pone.0234970] [PMID: 32589682]
Chashmniam S, Mirhafez SR, Dehabeh M, Hariri M, Azimi Nezhad[30]
M,  Nobakht  M  Gh  BF.  A  pilot  study  of  the  effect  of  phospholipid
curcumin on serum metabolomic profile in patients with non-alcoholic
fatty  liver  disease:  a  randomized,  double-blind,  placebo-controlled
trial.  Eur  J  Clin  Nutr  2019;  73(9):
1224-35.https://pubmed.ncbi.nlm.nih.gov/30647436/
[http://dx.doi.org/10.1038/s41430-018-0386-5] [PMID: 30647436]
Chashmniam  S,  Ghafourpour  M,  Rezaei  Farimani  A,  Gholami  A,[31]
Nobakht  Motlagh  Ghoochani  B.  Metabolomic  Biomarkers  In  The
Diagnosis Of Non-Alcoholic Fatty Liver Disease. Hepat Mon 2019;
19(9)e92244https://sites.kowsarpub.com/hepatmon/articles/92244.htm
l
[http://dx.doi.org/10.5812/hepatmon.92244]
Beyoğlu  D,  Idle  JR.  Metabolomic  and  Lipidomic  Biomarkers  for[32]
Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020;
10(2): 50.https://pubmed.ncbi.nlm.nih.gov/32012846/
[http://dx.doi.org/10.3390/metabo10020050] [PMID: 32012846]
Adeva MM, Calviño J, Souto G, Donapetry C. Insulin resistance and[33]
the  metabolism  of  branched-chain  amino  acids  in  humans.  Amino
Acids 2012; 43(1): 171-81.https://pubmed.ncbi.nlm.nih.gov/21984377/
[http://dx.doi.org/10.1007/s00726-011-1088-7] [PMID: 21984377]
Newgard  CB.  Interplay  between  lipids  and  branched-chain  amino[34]
acids in development of insulin resistance. Cell Metab 2012; 15(5):
606-14.https://pubmed.ncbi.nlm.nih.gov/22560213/
[http://dx.doi.org/10.1016/j.cmet.2012.01.024] [PMID: 22560213]
Lake  AD,  Novak  P,  Shipkova  P,  et  al.  Branched  chain  amino  acid[35]
metabolism  profiles  in  progressive  human  nonalcoholic  fatty  liver
disease.  Amino  Acids  2015;  47(3):
603-15.https://pubmed.ncbi.nlm.nih.gov/25534430/
[http://dx.doi.org/10.1007/s00726-014-1894-9] [PMID: 25534430]
Thompson  JA,  Markey  SP,  Fennessey  PV.  Gas-[36]
chromatographic/mass-spectrometric identification and quantitation of
tetronic  and  deoxytetronic  acids  in  urine  from  normal  adults  and
neonates.  Clin  Chem  1975;  21(13):
1892-8.https://pubmed.ncbi.nlm.nih.gov/1192581/
[http://dx.doi.org/10.1093/clinchem/21.13.1892] [PMID: 1192581]
Kassel DB, Martin M, Schall W, Sweeley CC. Urinary metabolites of[37]
L-threonine  in  type  1  diabetes  determined  by  combined  gas
chromatography/chemical  ionization  mass  spectrometry.  Biomed
Environ  Mass  Spectrom  1986;  13(10):
535-40.https://pubmed.ncbi.nlm.nih.gov/2947647/
[http://dx.doi.org/10.1002/bms.1200131004] [PMID: 2947647]
Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the[38]
stability  of  serum  and  urine  metabolomes  during  the  UK  Biobank
sample  collection  and  preparation  protocols.  Int  J  Epidemiol  2008;
37(Suppl. 1): i23-30.https://pubmed.ncbi.nlm.nih.gov/18381390/
[http://dx.doi.org/10.1093/ije/dym281] [PMID: 18381390]
Lau CE, Siskos AP, Maitre L, et al. Determinants of the urinary and[39]
serum metabolome in children from six European populations. BMC
Med 2018; 16(1): 202.https://pubmed.ncbi.nlm.nih.gov/30404627/
[http://dx.doi.org/10.1186/s12916-018-1190-8] [PMID: 30404627]
Han C, Bellone S, Siegel ER, et al. A novel multiple biomarker panel[40]
for  the  early  detection  of  high-grade  serous  ovarian  carcinoma.
Gynecol  Oncol  2018;  149(3):
585-91.https://pubmed.ncbi.nlm.nih.gov/29572027/
[http://dx.doi.org/10.1016/j.ygyno.2018.03.050] [PMID: 29572027]
Rathnayake D, Chang T, Udagama P. Selected serum cytokines and[41]
nitric  oxide  as  potential  multi-marker  biosignature  panels  for
Parkinson  disease  of  varying  durations:  a  case-control  study.  BMC
Neurol 2019; 19(1): 56.https://pubmed.ncbi.nlm.nih.gov/30954070/

https://pubmed.ncbi.nlm.nih.gov/28429257/
http://dx.doi.org/10.1134/S0012496617010069
http://www.ncbi.nlm.nih.gov/pubmed/28429257
https://pubmed.ncbi.nlm.nih.gov/30158571/
http://dx.doi.org/10.1038/s41575-018-0058-x
http://www.ncbi.nlm.nih.gov/pubmed/30158571
https://pubmed.ncbi.nlm.nih.gov/28526997/
http://dx.doi.org/10.1007/s12325-017-0556-1
http://www.ncbi.nlm.nih.gov/pubmed/28526997
https://pubmed.ncbi.nlm.nih.gov/26491425/
http://dx.doi.org/10.1007/s11306-015-0829-0
http://www.ncbi.nlm.nih.gov/pubmed/26491425
https://pubmed.ncbi.nlm.nih.gov/29122727/
http://dx.doi.org/10.1016/j.jprot.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29122727
https://www.almclinmed.ru/jour/article/view/878?locale=ru_RU#
https://pubmed.ncbi.nlm.nih.gov/28802074/
http://dx.doi.org/10.1002/hep.29465
http://www.ncbi.nlm.nih.gov/pubmed/28802074
https://pubmed.ncbi.nlm.nih.gov/25287287/
http://dx.doi.org/10.1038/nrendo.2014.171
http://www.ncbi.nlm.nih.gov/pubmed/25287287
https://pubmed.ncbi.nlm.nih.gov/28842175/
http://dx.doi.org/10.1016/j.cca.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28842175
https://pubmed.ncbi.nlm.nih.gov/25533197/
http://dx.doi.org/10.1111/liv.12769
http://www.ncbi.nlm.nih.gov/pubmed/25533197
https://pubmed.ncbi.nlm.nih.gov/164303/
http://dx.doi.org/10.1016/0009-8981(75)90481-7
http://www.ncbi.nlm.nih.gov/pubmed/164303
https://www.nogr.org/jour/article/view/449?locale=en_US#
https://pubmed.ncbi.nlm.nih.gov/30862046/
http://dx.doi.org/10.3390/ijms20051220
http://www.ncbi.nlm.nih.gov/pubmed/30862046
https://pubmed.ncbi.nlm.nih.gov/20526369/
http://dx.doi.org/10.1371/journal.pone.0010883
http://www.ncbi.nlm.nih.gov/pubmed/20526369
https://pubmed.ncbi.nlm.nih.gov/23160532/
http://dx.doi.org/10.2337/db12-0707
http://www.ncbi.nlm.nih.gov/pubmed/23160532
https://pubmed.ncbi.nlm.nih.gov/29362454/
http://dx.doi.org/10.1038/s41598-018-19753-9
http://www.ncbi.nlm.nih.gov/pubmed/29362454
https://pubmed.ncbi.nlm.nih.gov/19166731/
http://dx.doi.org/10.1016/j.aca.2008.11.058
http://www.ncbi.nlm.nih.gov/pubmed/19166731
https://onlinelibrary.wiley.com/toc/15732665/2000/23/1
https://pubmed.ncbi.nlm.nih.gov/32589682/
http://dx.doi.org/10.1371/journal.pone.0234970
http://www.ncbi.nlm.nih.gov/pubmed/32589682
https://pubmed.ncbi.nlm.nih.gov/30647436/
http://dx.doi.org/10.1038/s41430-018-0386-5
http://www.ncbi.nlm.nih.gov/pubmed/30647436
https://sites.kowsarpub.com/hepatmon/articles/92244.html
https://sites.kowsarpub.com/hepatmon/articles/92244.html
http://dx.doi.org/10.5812/hepatmon.92244
https://pubmed.ncbi.nlm.nih.gov/32012846/
http://dx.doi.org/10.3390/metabo10020050
http://www.ncbi.nlm.nih.gov/pubmed/32012846
https://pubmed.ncbi.nlm.nih.gov/21984377/
http://dx.doi.org/10.1007/s00726-011-1088-7
http://www.ncbi.nlm.nih.gov/pubmed/21984377
https://pubmed.ncbi.nlm.nih.gov/22560213/
http://dx.doi.org/10.1016/j.cmet.2012.01.024
http://www.ncbi.nlm.nih.gov/pubmed/22560213
https://pubmed.ncbi.nlm.nih.gov/25534430/
http://dx.doi.org/10.1007/s00726-014-1894-9
http://www.ncbi.nlm.nih.gov/pubmed/25534430
https://pubmed.ncbi.nlm.nih.gov/1192581/
http://dx.doi.org/10.1093/clinchem/21.13.1892
http://www.ncbi.nlm.nih.gov/pubmed/1192581
https://pubmed.ncbi.nlm.nih.gov/2947647/
http://dx.doi.org/10.1002/bms.1200131004
http://www.ncbi.nlm.nih.gov/pubmed/2947647
https://pubmed.ncbi.nlm.nih.gov/18381390/
http://dx.doi.org/10.1093/ije/dym281
http://www.ncbi.nlm.nih.gov/pubmed/18381390
https://pubmed.ncbi.nlm.nih.gov/30404627/
http://dx.doi.org/10.1186/s12916-018-1190-8
http://www.ncbi.nlm.nih.gov/pubmed/30404627
https://pubmed.ncbi.nlm.nih.gov/29572027/
http://dx.doi.org/10.1016/j.ygyno.2018.03.050
http://www.ncbi.nlm.nih.gov/pubmed/29572027
https://pubmed.ncbi.nlm.nih.gov/30954070/


Non-Targeted Serum Metabolomics Identifies Candidate Biomarkers The Open Biomarkers Journal, 2021, Volume 11   27

[http://dx.doi.org/10.1186/s12883-019-1286-6] [PMID: 30954070]
Pena MJ,  Heinzel  A,  Heinze G,  et  al.  A panel  of  novel  biomarkers[42]
representing different disease pathways improves prediction of renal

function  decline  in  type  2  diabetes.  PLoS  One  2015;
10(5)e0120995https://pubmed.ncbi.nlm.nih.gov/25973922/
[http://dx.doi.org/10.1371/journal.pone.0120995] [PMID: 25973922]

© 2021 Demyanova et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is
available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://dx.doi.org/10.1186/s12883-019-1286-6
http://www.ncbi.nlm.nih.gov/pubmed/30954070
https://pubmed.ncbi.nlm.nih.gov/25973922/
http://dx.doi.org/10.1371/journal.pone.0120995
http://www.ncbi.nlm.nih.gov/pubmed/25973922
https://creativecommons.org/licenses/by/4.0/legalcode

	Non-targeted Serum Metabolomics Identifies Candidate Biomarkers Panels Associated with Nonalcoholic Fatty Liver Disease: A Pilot Study in Russian Male Patients 
	[Aims:]
	Aims:
	Background:
	Objective:
	Materials and Methods:
	Results:
	Conclusion:

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Subjects
	2.2. Ethics
	2.3. Sample Preparation
	2.4. GC-MS Analysis
	2.5. Data Processing
	2.6. Statistical Analysis

	3. RESULTS
	4. DISCUSSION
	CONCLUSION
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES




