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Abstract: The role of n-6 polyunsaturated fats upon the formation of the mutagenic DNA adduct malondialdehyde-

deoxyguanosine (M1dG) in blood was investigated in male volunteers (n = 13) who consumed diets high in saturated and 

polyunsaturated fats, and polyunsaturated fat plus a-tocopherol supplemention (400 IU per day). On day 14 there was a 

significant difference in adduct levels between diets with saturated fats giving higher levels than polyunsaturated fats but 

this effect had disappeared by day 20 indicating that there is a relatively rapid adjustment to the effects on DNA damage 

of changes in dietary fat. a-Tocopherol showed a small benefit by day 20. Five females participated in the PUFA study 

and had higher mean adduct levels than men but there was no correlation with hormonal status. Overall, PUFA had a lim-

ited beneficial effect on M1dG levels that warrants further investigation. 

INTRODUCTION 

 There is a vast body of evidence, from both epidemiol-
ogical and dietary intervention studies [1-3], suggesting that 
diet is an important factor with regard to many health prob-
lems including the incidence of many cancers, although 
identification of the most important aspects are often elusive. 
There is, however, known to be a large geographical differ-
ence in the incidence of colorectal cancer with the highest 
number of cases in western countries such as Europe and the 
USA, whilst studies in migrant populations have shown that 
colorectal cancer incidence increases upon changing to a 
western diet [4-6], although changes in other lifestyle factors 
such as physical activity levels have also been implicated. 
Dietary fat, lipid peroxidation (LPO) and arachidonic acid 
metabolism have all been linked, amongst other factors, to 
colorectal carcinogenesis in a number of studies [7-9]. LPO 
is initiated by the attack of free-radicals on membrane lipids 
leading to reactive products that may be linked to tumour 
initiation. Malondialdehyde (MDA) is known to be a major 
product of LPO and has been shown to be mutagenic in bac-
terial [10, 11] and mammalian cells [12] due to the formation 
of the malondialdehyde-deoxyguanosine adduct, M1dG [13]. 
We have previously shown that inflammation of the gut is 
directly linked to elevated levels of M1dG [14]. Another 
study has suggested that a diet high in n-6 polyunsaturated 
fatty acids (PUFA) elevates M1dG adducts in human blood 
DNA, with women showing a slighter higher increase than 
men, [15] compared with a diet rich in monounsaturated fats. 
Nair et al. [16] examined etheno adducts in a subset of these  
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volunteers and found greatly elevated etheno adduct levels in 
the women only. Thus, the authors of these two studies con-
cluded that n-6 PUFA could increase LPO-derived DNA 
adducts in vivo with women showing the highest levels. 
However, we have previously shown that there is a large 
inter-individual variation in M1dG adduct levels in human 
colorectal mucosa of free-living adults and that in women 
M1dG adduct levels were positively associated with saturated 
fat (SFA), rather than PUFA [17]. Furthermore, the M1dG 
adducts showed an inverse association with both PUFA: 
SFA and monounsaturated fatty acids: SFA ratios. Thus, our 
epidemiological studies appear to be contradictory to the 
intervention studies of other researchers and we decided to 
examine this further in a carefully controlled intervention 
study. The analysis of blood samples was carried out primar-
ily as a direct comparison to previous studies but also to in-
vestigate the potential of utilising M1dG as a biomarker of 
colorectal cancer risk. We had previously determined that the 
M1dG adduct is stable in frozen blood and tissue samples 
and therefore suitable for long-term storage prior to analysis 
(unpublished data) making it a good candidate for large scale 
studies such as the EPIC cohort [18] where analyses may be 
performed many years after the samples have been collected. 

 In this study, male volunteers undertook a randomized 
cross-over intervention that was designed to further explore 
the effect of dietary PUFA compared with SFA and to mod-
ify any increase in M1dG in WBC DNA by supplementation 
with a-tocopherol, a fat soluble anti-oxidant that is present in 
plasma and gastric mucosa in equivalent concentrations [19]. 
a-Tocopherol would be expected to reduce lipid peroxidation 
by reducing free radicals, and ultimately M1dG. To further 
investigate the hypothesis that the formation of M1dG is re-
lated to hormonal status, [20] 5 premenopausal women not 
taking the contraceptive pill undertook the PUFA diet only 
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in order to identify any patterns in M1dG levels throughout 
their menstrual cycles that might be worthy of further con-
sideration. Both of these studies were carried out in a meta-
bolic suite where diet was carefully controlled.  

MATERIALS AND METHODS 

Materials 

 Tetramethoxypropane (TMP), guanine, calf thymus DNA 
(CT-DNA), propidium iodide (PI), were obtained from 
Sigma Chemical Co. Ltd. (Dorset, UK). Human genomic 
DNA (1691112) was purchased from Boehringer Mannheim 
(Lewes, UK). Phosphate buffered saline (PBS) tablets were 
purchased from Oxoid Ltd. (Basingstoke, Hampshire, UK). 
QIAGEN genomic-tips 100/G were purchased from Qiagen 
Ltd. (Crawley, UK), 0.45 μm nitrocellulose (NC) membrane 
(BA85) and Minifold II, 72 well slot blot microfiltration ap-
paratus were purchased from Schleicher & Schuell (Dassel, 
Germany), goat anti-mouse IgG horseradish peroxidase con-
jugate from Dako (Glostrup, Denmark) and SuperSignal Ul-
tra from Perbio Science UK Ltd. (Cramlington, UK). All 
other reagents and solvents were obtained from Fisher Scien-
tific, (Loughborough, UK), including methanol which was 
HPLC grade, or Sigma-Aldrich Company Ltd. (Gillingham, 
UK).  

Volunteer Protocol 

 13 male and 5 female volunteers were housed in the 
metabolic suite of the MRC Dunn Human Nutrition Unit for 
the duration of each intervention but resumed their normal 
diets for the washout periods. The volunteers were asked to 
continue their usual exercise habits. All volunteers were aged 
> 25 yrs old, non-smokers with no history of medical prob-
lems. Permission for these studies was given by the Cam-
bridge Local Research Ethics Committee (LREC01/055). All 
specimens were collected following general protocols de-
scribed elsewhere [21]. 

Diets 

 The male subjects undertook a randomised crossover  
intervention study consisting of three dietary periods of 20  
days with a washout period of 21 days between rounds. They  
were fed normal foods on carefully controlled isocaloric di- 
ets that were matched for macronutrient composition. The  
nutritional content of each of the diets was calculated using  
Dietplan version 5 (for Windows) and contained 40% total  
energy as fat, typical of western diets consisting of 1) 20%  
total energy as SFA + 5% total energy as PUFA, 2) 20%  
total energy as PUFA and 5% total energy as SFA 3) 20%  
total energy as PUFA and 5% total energy as SFA plus 400  
IU -tocopherol per day. The remaining 15% was monoun- 
saturated fats which were kept constant throughout the diets.  
Food was purchased and prepared in batches and frozen to  
minimise variation. The basal diets were prepared to provide  
10 MJ of energy daily, with 1 MJ increments to adjust to the  
needs of each individual, using standard calculations based  
on weight and height for required energy intakes to calculate  
basal metabolic weight  estimated physical activity ratio  
[22]. The 1 MJ increments were provided as Polycal solution  
(Nutricia, Wiltshire, UK.), bread, jam and margarine or but- 
ter. Only food and drinks provided by the unit were permit- 
ted and subjects were required to consume everything pro- 
vided each day. The volunteers continued with their usual tea  

and coffee drinking habits using the items provided by the  
unit, including drinking water. Volunteer body weight was  
monitored daily and increments adjusted accordingly in the  
first week until weight was stable. The volunteers ate a 3-day  
rotating diet during the intervention. Duplicates of food  
batches were stored at –80°C for analysis of MDA content.  
The females consumed the high PUFA diet for 20-34 days as  
determined by the duration of their menstrual cycles.  

Blood Samples 

 Blood was taken from the male subjects on days 1, 14 
and 20 of each dietary period and from the females on day 1, 
the day of LH surge as determined by the use of Clear Plan 
Ovulation predictor test kits (Unipath, Bedford, UK), the day 
after the LH surge and on the final day of the study which 
was determined by the length of the volunteers menstrual 
cycles. Blood was transferred to Vacutainer ACD whole 
blood tubes (BD, Oxford, UK) and stored at -80º C until re-
quired. Filled blood tubes were processed as follows: 1) cen-
trifugation at 1000 g for 10 minutes at 4° C and the plasma 
aspirated off and stored at -80° C, 2) left to clot at RT for 30 
min, centrifuged at 1500 g for 10 minutes at 4° C and the 
serum aspirated off and stored at -20° C, 3) DNA extraction 
using Qiagen genomic tips according to the manufacturer’s 
protocol with the following alterations: 3 ml of blood was 
digested for 2 h at 50º C in a waterbath with 122 μl of prote-
inase K (Sigma P6556; 20 mg/ml) and 100 μl heat-treated 
RNase A (Sigma R5503; 100 mg/ml). The tips were rinsed 
with 3  5 ml buffer QC. All other steps were according to 
the Qiagen protocol. The DNA was dissolved in H2O and 
stored at -80º C until analysis. The concentration measured 
by UV analysis, max 260 nm. DNA purity was assessed by 
UV using the 260: 280 nm ratio.  

M1dG Adduct Analysis 

 Preparation of standard M1dG-DNA and the immunoslot 
blot assay (ISB) were as described elsewhere [23]: Standards 
containing 3.5 μg DNA were prepared with a final DNA 
concentration of 100 μg/ml and 0-5 fmol M1dG/μg DNA. 
Solutions of standard or human DNA samples were applied 
in triplicate to the NC membrane (1 μg per well), baked at 
80

o
C in a vacuum oven, incubated with the anti-M1dG 

monoclonal antibody D10A1 [24] (1:90,000), and then incu-
bated with the goat anti-mouse IgG HRP (1:4,000). The 
membrane was washed between steps. Enzymatic activity 
was visualised using SuperSignal Ultra. Images were cap-
tured on a Kodak Image Station 440CF and the results cor-
rected for local background. Propidium iodide staining was 
used to reduce, and correct for, variations in DNA binding to 
the nitrocellulose membrane (the major source of analytical 
variability). Analyses were performed in triplicate on the 
same blot and only the results with a SD of < 20% were in-
cluded in the reported data. A human DNA QC sample 
(Boehringer Mannheim) was included in all blots and the 
results rejected if the QC had a SD of > 20% for the tripli-
cate analyses or the QC result was > 2 SD from the mean of 
all the QC results. The limit of detection was 0.2 adducts per 
10

7
 normal nucleotides [23]. 

Food MDA Analysis 

 Specific preparation of the food samples for the analysis 
was performed using a method of Sanchez-Escalante et al. 
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[25]. MDA in food was analysed using the TBARS method 
[26].  

Plasma MDA Analysis 

 A method based upon that of Therasse and Lemonner 
was employed [27]. Plasma was mixed with DETBA (10 
mM) in phosphate buffer (0.1 M, pH 3), ethyl acetate added 
and the mixture heated to 95º C for 1 h, diethyl ether added 
and the sample centrifuged. The aqueous layer was discarded 
and the organic layer evaporated under nitrogen at 40º C and 
reconstituted in methanol. Analysis was by reverse phase 
HPLC with fluorescence detection ( ex 515 nm, em 553 nm) 
using 0.1% ethanolamine in water: acetonitrile (71: 29 v/v) 
as the mobile phase. Only the final blood samples were ana-
lysed for the men, but all samples were analysed for the 
women. Samples that were below the LOD (0.005 nmol/L) 
were reported as 0.001 nmol/L for the purpose of statistical 
analyses. 

Plasma Phospholipid Fatty Acid Analysis 

 Dietary compliance was assessed by changes in plasma 
phospholipids using a GC-FID method based on the addition 
of di-palmitoyl-D31-phosphatidylcholine internal standard to 
plasma prior to extraction [28]. 

Plasma Tocopherol Analysis 

 Changes in plasma -tocopherol and -tocopherol were 
assessed using a method based on the addition of a tocol 
internal standard to plasma samples [29]. 200 μl plasma 
samples were mixed with methanol for deproteinization fol-
lowed by hexane extraction. The organic solvents were re-
moved and the isolated compounds redissolved in methanol / 
ethanol / hexane (88/10/2; v/v) Analysis was carried out on a 
HP 1100 HPLC equipped with a Photo Diode Array UV De-
tector, an auto injector and an Altech HS C18 column (250  

0.46 mm ID; 3 μm) at a flow rate of 0.9 ml/min. Separation 
was obtained with a step gradient: 15 min solvent A (metha-
nol / acetonitrile / acetic acid / triethylamine (40/60/0.5/0.1, 
v/v)), then 10 min solvent B (solvent A / dichloromethane / 
triethylamine (76.5/23.5/0.0235, v/v)). Chromatograms were 
extracted at 292 nm for quantification of the compounds. 

Oestrogen Analysis 

 Estradiol, progesterone and sex hormone binding globu-
lin (SHBG) were measured using a Perkin-Elmer Auto 
DELFIA

®
 immunoassay system with Estradiol Kit B056-

101, Progesterone Kit B066-101 and SHBG Kit BO70-101 
respectively, using the protocol described by the manufac-
turer. 

Statistics 

 Statistical analyses were performed using SPSS for Win-
dows version 14.0. Differences in adduct levels between 
dietary periods were assessed by Wilcoxon signed rank tests 
for related samples or ANOVA for unrelated samples. Asso-
ciations were assessed using Spearman rank correlation coef-
ficient. 

RESULTS 

Males 

 Dietary compliance was assessed from changes to the 
plasma fatty acid profiles of the volunteers throughout each 
intervention. Of the 19 plasma fatty acids measured, the ma-
jor ones were linoleic, arachidonic, palmitic and stearic acid 
which together made up 80% of the total fatty acid profile on 
the PUFA diet and 73% on the SFA diet. Table 1 shows that, 
as expected, the percentage of the PUFAs, linoleic acid and 
arachidonic acid, was significantly greater on the PUFA diet 
compared with the SFA diet, and that there was a significant 
increase in the saturated fatty acid, palmitic acid when the 

Table 1. Plasma fatty acids (% of total), -tocopherol, and MDA in final blood samples (day 20), and M1dG adducts throughout 

dietary interventions, in male subjects on high PUFA/high SFA and high PUFA + -tocopherol supplemented diets. n < 13 

where results were rejected or there was insufficient sample for all analyses. Statistical analysis was by Wilcoxon Signed 

Ranked tests using SPSS for Windows V.14 

 

SFA (S) PUFA (P) P + -Toc (T) 
Analyte 

Mean sd n Mean sd n Mean sd n 

Statistical Comparison  

Between Diets: Z (p) Values 

Linoleic acid / % 23.9 5.5 9 30.4 1.9 12 34.3 2.9 6 P vs S: -2.43 (0.015) 

Arachidonic acid / % 8.5 3.4 9 11.0 2.1 12 11.9 2.8 6 P vs S: -2.31 (0.021) 

Palmitic acid / % 28.2 1.4 9 25.4 1.1 12 27.8 1.3 6 P vs S: -2.19 (0.028) 

-Tocopherol μmol/L 22.9 7.1 9 23.4 5.9 10 29.3 2.0 6 P vs S: -0.94 (0.345) 

P vs T: -1.83 (0.068) 

M1dG per 107 bases: Day 1 1.77 1.59 11 2.08 1.43 10 3.05 3.78 9 P vs S: -0.338 (0.735) 

P vs T: -0.845 (0.398) 

Range on day 1 0.20-4.84 0.24-4.57 0.25-12.74  

Day 14 2.19 1.75 11 1.63 1.34 9 1.99 1.71 9 P vs S: -2.366 (0.018) 

P vs T: -2.201 (0.028) 

Range on day 14 0.29-4.83 0.32-3.70 0.11-5.13  

Day 20 1.72 1.52 11 1.74 1.51 10 1.64 1.34 10 P vs S: -1.01 (0.314) 

P vs T: -0.14 (0.889) 

Range on day 20 0.18-4.94 0.05-4.73 0.28-4.14  
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volunteers were on the SFA diet. Stearic acid showed very 
little variation between diets (data not shown). The volun-
teers showed a similar plasma fatty acid profile between 
days 14 and 20 on each diet indicating that a steady state had 
been reached, whilst the initial profiles were similar across 
all interventions for each volunteer, indicating that the wash-
out period had been effective. -Tocopherol supplementa-
tion resulted in a mean increase of 25% for plasma -
tocopherol relative to the PUFA diet on day 20 (Table 1), 
although this did not reach significance, p 0.068. This higher 
level was also observed on day 14 indicating a steady state 
and dietary compliance, as already seen with the plasma fatty 
acid profiles. The difference in -tocopherol between the 
PUFA and the SFA diets was not significant (p = 0.345) and 
the levels did not change throughout these interventions as 
was to be expected in the absence of any supplementation.  

 Plasma MDA levels were measured but found to be very 
low with some sample concentrations at or below the LOD. 
Analysis of 19 samples from day 20 bloods across all inter-
ventions revealed mean MDA levels of 0.007 ± 0.007 
nmol/ml, 6 samples were below the LOD whilst the others 
were only just above the LOD. Plasma MDA did show a 
very weak positive correlation with -tocopherol across all 
diets (rs = 0.296, p = 0.232) but there were no significant 
differences for MDA between diets. Analysis of the MDA 
concentration in foods was carried out to confirm that there 
was no degradation of PUFA to MDA during preparation 
and showed that there was no significant difference between 
the foods for the PUFA and SFA diets (4.47 ± 1.76 and 4.62 
± 0.88 nmol/ml respectively). 

 At least three DNA samples from all blood samples were 
each analysed in triplicate for M1dG adducts using the ISB 
assay and the results reported as a mean of all analyses (Ta-
ble 1). On both the PUFA and tocopherol supplemented diets 
the M1dG adducts had reduced from the baseline values be-
tween days 1 and 14, but this reached significance for the 
PUFA diet only (p = 0.048). However, for the PUFA diet the 
adducts actually increased slightly between days 14 and 20 
(p = 0.086) whereas on the tocopherol supplemented diet the 
adduct levels had decreased further (p = 0.110). The opposite 
trend was seen with the SFA diet, adducts increased initially 
but then decreased again by the end of the intervention (day 
1-14 p = 0.959, day 14-20 p = 0.575). 

 In order to compare the overall effects of the diets, the 
adduct levels on day 20 were examined as there had been a 
steady state of plasma fatty acids for seven days at this point 
and it was thought that the adduct levels would have stabi-
lized too. However, there was a lot of inter-individual varia-
tion in the adduct levels as seen by the ranges in Table 1 at 
each time point. There was no significant difference between 
diets for all volunteers of M1dG adducts at day 20, although 
the mean value for the tocopherol diet is lower than the other 
two diets. The individual changes are shown in Fig. (1) 
where it can be seen that two individuals had higher levels of 
adducts than the rest of the cohort across all interventions, 
and another individual certainly had higher levels of adducts 
on the PUFA diet than the majority of the cohort but, due to 
analytical problems, it wasn’t possible to measure the ad-
ducts in his other samples. The overall trend at day 20 is that 
more of the volunteers showed higher adduct levels on the 
SFA diet than on the PUFA diet (n = 6) and -tocopherol 

supplementation resulted in higher levels than PUFA al-
though not reaching the levels observed with SFA. As seen 
in Fig. (1), three volunteers showed the opposite trend. How-
ever, when we looked at the data for day 14 we found a sig-
nificant difference between the diets with the PUFA diet 
giving lower adduct levels than SFA (p = 0.018), and the 
tocopherol supplementation increasing the adducts relative to 
PUFA in all volunteers (p = 0.028). These individual 
changes at day 14 are shown in Fig (2) where all volunteers 
had a lower level of adducts on the PUFA diet compared 
with either the SFA or tocopherol supplementation which is 
a more consistent pattern than for day 20 (Fig. 1). Statistical 
analysis for correlations did not reveal any significant corre-
lations between M1dG, MDA or any of the other analytes.  

 

 

 

 

 

 

 

 

 

 

Fig. (1) M1dG adduct levels in WBC DNA on the final day of each 

diet in all volunteers (n = 13). A full data set is available for 8 vol-

unteers only as shown by the lines; the remaining data is shown as 

single points on the graph. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2) M1dG adduct levels in WBC DNA on the day 14 of each 

diet in all volunteers (n = 13). A full data set is available for 6 vol-

unteers only as shown by the lines; the remaining data is shown as 

single points on the graph. 

 

Women 

 Dietary compliance in the women was also assessed by 
the plasma fatty acid profile throughout the intervention pe-
riod (Table 2). Mean linoleic acid levels increased by 25% 
whereas palmitic acid and arachidonic acid decreased by 
22% and 11% respectively during the study period. This 

0

1

2

3

4

5

SFA PUFA Toc

M
1
d

G
 a

d
d

u
c

ts
 p

e
r 

1
0

7
 n

u
c

le
o

ti
d

e
s

 

0

1

2

3

4

5

SFA PUFA Toc

M
1
d

G
 a

d
d

u
c

ts
 p

e
r 

1
0

7
 n

u
c

le
o

ti
d

e
s



32    The Open Biomarkers Journal, 2008, Volume 1 Moore et al. 

change for palmitic acid was significant between day 1 and 
final samples (Z = -2.023, p = 0.043), whereas the other two 
fatty acids did not reach significance. The women did not, in 
general, exhibit a great change in mean M1dG adducts 
throughout the study although the third samples were the 
lowest overall which is a similar trend to the men. The range 
of adducts was 1.03-5.06 for all time points but 1.50-5.06 for 
the final samples only. It was thought that M1dG may be 
linked to the menstrual cycle but Fig. (3) shows that no 
trends were observed with oestradiol. Plots of MDA, sex 
hormone-binding globulin (SHBG) and progesterone also 
failed to show any trends with the variation in M1dG (data 
not shown). 

 MDA levels in women were higher than in the men with 
a mean value of 0.034 ± 0.010 μmol/L at the end of the 
study, only two samples were below the LOD and there was 
a range of 0.007-0.081 for all samples. The data revealed a 
very weak negative correlation of M1dG with MDA (Rs = -
0.105, p = 0.745) and oestradiol (Rs = -0.259, p = 0.300), 
whilst MDA showed a weak negative correlation with 
oestradiol (Rs = -0.289, p = 0.362), There were no significant 
correlations of M1dG or MDA with any fatty acids or hor-
mones as determined by Spearman Rank analysis (data not 
shown). The hormones all showed significant correlations 
with each other, as was to be expected, whilst SHBG and 
progesterone also showed a correlation with total fatty acids 
in the blood plasma (p = 0.042 and 0.025 respectively) for all 
samples. MDA levels were low at the end of the interven-
tion, and showed no correlation with M1dG adducts but did 
show a positive significant correlation with -tocopherol 
throughout the intervention (rs 0.613, p = 0.034), which was 
also observed with the men. 

DISCUSSION 

 This study was carried out under highly controlled condi-
tions with volunteers fed constant diets of known composi-

tion. The analytical methods were all well established and 
the analytes were known to be stable under the storage con-
ditions used. Changes in plasma fatty acids and a-tocopherol, 
as shown in Tables 1 and 2, verify that the volunteers kept to 
the diets and that the desired changes in plasma fatty acids 
were achieved. The normal range in UK populations of 
PUFA is 5.4 ± 1.6 (sd)% energy, and the shift to 20% dietary 
fat achieved in this study was an extreme change. However, 
despite this, there were limited effects on plasma MDA and 
M1dG levels in the male subjects. In most cases MDA 
proved to be very low or even below the limit of detection. 
We had expected that a steady state of adduct levels would 
be reached by day 14 at the earliest and remain constant, or 
even show a more marked change in the same direction, until 
day 20. The data shows that whilst a steady state was main-
tained throughout this period for the plasma fatty acids, the 
levels of adducts was significantly different between diets on 
day 14 and had continued to change but reverted back to-
wards the individuals’ ‘normal’ levels by day 20 with the 
exception of the a-tocopherol supplemented diet which con-
tinued to decline. Thus, by day 20 there were no significant 
differences between the diets. This seems to indicate that a 
high PUFA diet has the effect of reducing adduct levels 
compared with SFA in the first two weeks but the body read-
justs in the long term. The opposite effect is seen with SFA 
whereby adducts increase initially but then reduce by day 20. 
Supplementation with a-tocopherol initially interferes with 
the reduction seen with PUFA although in the long term 
supplementation may be beneficial in some individuals who 
respond to its’ effects (Figs. 1 and 2). 

 In women, there was a significant downward trend in 
palmitic acid with time, again indicating that the desired 
changes in diet were achieved. However the increase in 
plasma PUFAs were not related to changes in plasma MDA 
or M1dG adduct levels. Only one volunteer showed an in-
crease in MDA and it was actually reduced in three volun-

Table 2. Results for analyses of blood samples from female subjects (n =5) on high PUFA diet throughout the intervention and the 

statistical differences between initial and final samples by Wilcoxon Signed Ranks test using SPSS for Windows V.14 

 

Sample  
M1dG 

/10
7 

Palmitic Acid 

mol/L 

Linoleic 

Acid mol/L 

Arachidonic 

Acid mol/L 

-Tocopherol 

mol/L 

Estradiol 

pmol/L 

SHBG 

nmol/L 

Progesterone 

nmol/L 

1 Mean 2.19 1793 1344 622 21.02 143 132 2.02 

 sd 0.60 855 352 289 7.73 68 181 .79 

2 Mean 2.13 1455 1655 600 24.02 340 109 3.28 

 sd 0.92 515 456 263 7.16 211 140 1.65 

3 Mean 1.63
 †

 1231 * 1524 * 494 * 21.09 * 244 * 108
 †

 4.40
 †

 

 sd. 0.71 104 333 125 2.14 89 135 3.65 

4 Mean 2.70 1405 1681 556 23.11 130 136 3.86 

 sd 1.38 614 543 246 7.11 46 208 3.37 

All Mean 2.19 1497 1554 576 22.45 211 122 3.34 

 n 19 18 18 18 18 18 19 19 

 sd. 0.96 605 426 233 6.35 146 155 2.51 

Z  -0.135 -2.023 -1.483 -1.214 -1.753 -0.135 -0.405 0.944 

p  0.893 0.043 0.138 0.225 0.080 0.893 0.686 0.345 

* n = 3. 
† n = 4. 
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teers. Similarly, MDA and M1dG showed no correlation with 
each other. An increase in MDA would be expected to corre-
late with an increase in M1dG but three of the volunteers 
showed the opposite trends for MDA and M1dG. Nor was 
there any correlation of either MDA or M1dG with oestradiol 
levels throughout their menstrual cycles.  

 Women did have higher levels of M1dG adducts than 
men by the end of the PUFA intervention, as reported by 
Fang et al. [15], (2.70 per 10

7
 ± 1.38 and 1.74 per 10

7
 ± 

1.51) but this was not significant (F 1.42, p 0.26). MDA lev-
els were also higher in women (0.034 ± 0.010 compared with 
0.007 ± 0.007) and this was significant (F 22.43 p 0.001). 
Linoleic acid in blood plasma was also generally higher in 
women (34% of total fatty acids compared with 30% in men) 
which suggests that there may be a link in women between 
MDA and PUFAs such as linoleic acid.  

 Comparison of the data for the male volunteers does 
show that there was a significant difference in adduct levels 
at day 14 and that more than half of the volunteers showed 
an increase in adducts on the SFA diet compared with the 
PUFA diet which corroborates the study of a free-living 
population using dietary questionnaires [17]. This large in-
ter-individual variation has been seen previously for many 
other DNA adducts, including M1dG [17, 23], and makes 
analysis of the data very complex. It is still not clear from 
our data what the link is between M1dG, MDA and plasma 
fatty acids. Indeed, the trends seen here are the opposite of 
those that would be expected if M1dG is formed solely by the 
mechanisms discussed in the introduction. 

 Thus this study therefore suggests that an increase in n-6 
PUFAs causes an initial decrease in M1dG adduct levels, 
which is contrary to that shown by Fang et al. [15] who com-
pared n-6 PUFA and MUFA diets. We did keep MUFA 
constant at 15% of total energy whereas Fang et al. had 
differing levels on both diets (10% on the PUFA diet and 
16% on the MUFA diet). Other fats were also present in 
different proportions on the two studies. Consequently it 
may be difficult to directly make comparisons of M1dG 
adducts and MDA levels between the two studies. De Kok et 
al. have also shown that n-6 PUFAS do not lead to high 
MDA or high 8-oxo-dG adduct levels, another marker of 
oxidative DNA damage [30], by using supplementation of 
the normal diet with linoleic acid and palmitic acid to alter 
dietary fat. It has been known for sometime that a high ratio 

has been known for sometime that a high ratio of n-6: n-3 
PUFA ratio may have adverse effects [31] and more recently 
Davidson et al. have shown that only n-3 PUFAS, not n-6 
PUFA or MUFA, are protective against DNA adduct forma-
tion and promotional stage of colon cancer in rats [32]. The 
Fang study utilised different ratios of n-6: n-3 PUFAs for the 
two diets (13: 0 and 3: 1 respectively) and the beneficial ef-
fect of their MUFA diet may actually be due to the lower n-
6: n-3 ratio rather than MUFA itself.  

 Another fact that should be considered is the length of 

the dietary intervention. We intended to look at the adduct 

levels after 20 days when a steady state of plasma fatty acids 
was known to exist. Analysis of the data showed that the 

adducts were not in a steady state case despite this being the 

case for the plasma fatty acids. Other researchers have 
looked at different intervention lengths; Fang et al. [15] had 

a 25 day intervention whereas de Kok et al. had a 42 day 

intervention [30]. Thus, the differences observed between 
studies may be due, in part, to the intervention length if 

DNA adducts are rapidly removed from the body after a cer-

tain period of time which may vary between individuals, and 
for different adducts. 

 One further option is that M1dG is not a product of the 
reaction of DNA with MDA from lipid peroxidation but due 

to the reaction with base propenals from oxidative cleavage 

of the DNA backbone [33]. Base propenals and MDA can 
both be derived from 4’-oxidation of deoxyribose although 

base propenals have been reported to be more mutagenic 

(30–60 fold) than MDA due to a more efficient reaction with 
DNA [34]. This may explain the reason that intracellular 

levels of M1dG are relatively insensitive to variations in 

plasma PUFA [33] although oxidation of PUFAs is known to 
give MDA and M1dG [33]. Furthermore, M1dG has been 

detected in urine samples at levels of 12+/-3.8 fmol kg
-1

 [35] 

and may also be oxidized to 6-oxo-M1dG adducts prior to 
excretion in urine [36, 37]. It therefore appears that analysis 

of M1dG from blood DNA will not be a useful biomarker of 

colorectal cancer risk due to rapid excision and excretion and 
that the analysis of M1dG adducts in urine may prove to be 

more beneficial. Moreover, the collection of urine samples is 

less invasive and simpler than the collection of blood sam-
ples making it the preferred option for use as a biomarker. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Variation in M1dG adducts and oestradiol throughout the menstrual cycles in 5 volunteers (columns: M1dG adducts,  oestradiol). 



34    The Open Biomarkers Journal, 2008, Volume 1 Moore et al. 

CONCLUSIONS 

 The purpose of this study was to examine the effects of 
n-6 PUFA upon M1dG adducts. The diets were designed to 
reflect normal eating habits in this country with the aim of 
advising people upon diet with potential future consequences 
in relation to cancer. We found that the levels of both MDA 
and M1dG were very low, sometimes around the limit of 
detection for the assays used, particularly in the case of 
MDA, and that a high level of dietary n-6 PUFA does not 
significantly influence blood levels of MDA in blood 
plasma. However, M1dG adducts did show significant differ-
ences at day 14 of the study but not at the end indicating that 
the body is able to regulate these adduct levels possibly by 
excision and excretion via other routes. The observations 
corroborate those made in our previous study [17] where 
SFA was positively associated with M1dG adducts rather 
than PUFA. Overall, these results show that M1dG adducts 
analysis must be performed at an earlier time point in the 
dietary intervention in order to see a measurable effect. 

Trial Registration 

 Cambridge Local Research Ethics Committee LREC01/ 
055. 
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